Citation
Magnesium carbonate, a recycled coagulant for water treatment

Material Information

Title:
Magnesium carbonate, a recycled coagulant for water treatment
Creator:
Thompson, Cliff Green, 1941-
Publisher:
University of Florida
Language:
English

Subjects

Subjects / Keywords:
Magnesium ( jstor )
Turbidity ( jstor )
Coagulation ( jstor )

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
021457401 ( ALEPH )
18067066 ( OCLC )
AFA9771 ( NOTIS )

Aggregation Information

UFIR:
Institutional Repository at the University of Florida (IR@UF)
UFETD:
University of Florida Theses & Dissertations
IUF:
University of Florida

Downloads

This item has the following downloads:

UF00084184_00001 ( .pdf )

00006.txt

00026.txt

00047.txt

00080.txt

UF00084184_00001_pdf.txt

00058.txt

00105.txt

00060.txt

00054.txt

00092.txt

00051.txt

00055.txt

00061.txt

00153.txt

00162.txt

00137.txt

00067.txt

00142.txt

00037.txt

00033.txt

00100.txt

00096.txt

00145.txt

00108.txt

00062.txt

00002.txt

00112.txt

00146.txt

00076.txt

00057.txt

00148.txt

00158.txt

00087.txt

00066.txt

00073.txt

00075.txt

00007.txt

00127.txt

00027.txt

00063.txt

00114.txt

00091.txt

00071.txt

00120.txt

00059.txt

00136.txt

00150.txt

00042.txt

00156.txt

00125.txt

00023.txt

00167.txt

00039.txt

00122.txt

00163.txt

00133.txt

00072.txt

00081.txt

00020.txt

00038.txt

00151.txt

00101.txt

00011.txt

00160.txt

00034.txt

00010.txt

00083.txt

00157.txt

00143.txt

00024.txt

00110.txt

00093.txt

00117.txt

00152.txt

00022.txt

00119.txt

00111.txt

00154.txt

00019.txt

00126.txt

00135.txt

00070.txt

00032.txt

00138.txt

00068.txt

00107.txt

00128.txt

00140.txt

00064.txt

00008.txt

00035.txt

00095.txt

00090.txt

00016.txt

00116.txt

00118.txt

00005.txt

00103.txt

00166.txt

00017.txt

00139.txt

00097.txt

00050.txt

00121.txt

00085.txt

00018.txt

00098.txt

00113.txt

00052.txt

00144.txt

00084.txt

00069.txt

00134.txt

00004.txt

00088.txt

00029.txt

00074.txt

00132.txt

00077.txt

00041.txt

00053.txt

00164.txt

00104.txt

00115.txt

00078.txt

00149.txt

00141.txt

00131.txt

00021.txt

00028.txt

00031.txt

00009.txt

00046.txt

00147.txt

00044.txt

00013.txt

00001.txt

00109.txt

00099.txt

00102.txt

00040.txt

00129.txt

00094.txt

00159.txt

00086.txt

00130.txt

00049.txt

00079.txt

00048.txt

00165.txt

00123.txt

00065.txt

00106.txt

00015.txt

00056.txt

00045.txt

00161.txt

00030.txt

00089.txt

00082.txt

00155.txt

00036.txt

00124.txt

00043.txt

00025.txt

00003.txt


Full Text












Magnesium Carbonate, A Recycled
Coagulant for Water Treatment













By

CLIFF GREEN THOMPSON


A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL OF
THE UNIVERSITY OF FLORIDA IN PARTIAL
FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY










UNIVERSITY OF FLORIDA
1971












ACKNOWLEDGMENTS


The author wishes to express his appreciation to his

committee chairman, Dr. J.E. Singley, for his assistance

and guidance throughout the course of this graduate research

work. The author is most deeply grateful for the learning

experience derived from the association with Dr. A. P. Black.

His inspirational enthusiasm and tireless assistance to a

large degree made this dissertation possible. Appreciation

is extended to Dr. P. L. Brezonik and Dr. G. M. Schmid for

giving freely of their time and assistance.

Gratitude is extended to Mrs. Jeanne Dorsey for her

typing of this dissertation. To my fellow students, Mr.

Roger Yorton and Mr. Roy Burke,for their assistance in analyti-

cal and statistical techniques the author extends his

appreciation.

To my wife and two children, a special appreciation

is extended for their forebearance and understanding during

these past three years.









CONTENTS


Page

ACKNOWLEDGMENTS ...................... ................. ii

LIST OF TABLES ........................................... v

LIST OF FIGURES ...................................... viii

ABSTRACT ......... ................ .................... x

CHAPTER

1 INTRODUCTION ...... ........................... 1

2 THEORETICAL CONSIDERATIONS.................... 12

Magnesium Chemistry ...... .... ...... .... 12
Colloidal Destabilization ................. 26
Chemical and Physical Properties of
Organic Color ............................. 28
Chemical and Physical Structure of
Montmorillonite and Emathlite Clays.... 30
Chemistry of Iron Corrosion and Control
by Calcium Carbonate Deposition......... 31

3 EXPERIMENTAL MATERIALS AND METHODS ........... 34

Methods ............... .................... 34
Materials ................................ 36
Preparation of Materials .................. 38
Analytical Techniques ...................... 45
Jar Test Procedures ...................... 50
Recovery Studies .......................... 52
Coagulation Using Recovered Magnesium
Bicarbonate ................ .......... 55

4 RESULTS AND DISCUSSION............ ... ........ 56

Coagulant Studies of Synthetic Waters...... 56
Study of Natural Waters .. ............ 62
Solubility of Magnesium Hydroxide.......... 84
Determination of Conditions for Lowest
Treatment Cost ......................... 85


iii











Electrophoretic Mobility as a Measure
of Treatment Efficiency ............... 97
Prediction of the Required Coagulant
Dose ................................ .. 103
Coagulant Recovery.......................... 106
Coagulation with Recovered Magnesium....... 114
Comparison of Values for Residual
Magnesium Determined by EDTA With
Those Determined by Atomic Absorption.... 116
Application of the Process................ 120
Photographic Comparison of the Formation
of Flocs Produced With Magnesium
Carbonate and with Alum................. 124

5 SUMMARY AND CONCLUSIONS...................... 132

6 RECOMMENDATION FOR FURTHER STUDY............... 135

APPENDIX ........................ ...... .... .. .... 139

REFERENCES ...................................... .... 143

BIOGRAPHICAL SKETCH ....................... ......... 150


1


CHAPTER


Page









LIST OF TABLES


Table Page

1 Chemical Analysis of Organic Color ........... 42

2 Magnesium Carbonate Required for Coagulation
of Organic Color and Emathlite Turbidity ...... 56

3 Lime and MgCO Coagulation of a Fuller's
Earth Turbidity, Synthetic Water ................. 58

4 MgCO Coagulation of a Highly Colored,
Fuller's Earth Turbidity, Synthetic Water ..... 59

5 Magnesium Carbonate Dosage Required to
Coagulate Organic Color and Montmorillonite
Turbidity ....................................... 60

6 Coagulation of a Highly Colored Synthetic
Water with MgCO ............ ...... .......... .. 61

7 MgCO3 and Alum Coagulation of Montgomery,
Alabama Water .......... ... ... ............. ..... 63

8 MgCO3 and Alum Coagulation of Mobile River
Water, Mobile, Alabama ....... ...... ..... ....... 64

9 Effect of Alum as a Flocculant Aid in
Color and Turbidity Coagulation with
Magnesium Carbonate ........ ............... 65

10 Coagulation of Atlanta, Georgia Water with
MgCO3 and Alum ................ ................ 67

11 MgCO and Alum Coagulation of Baltimore,
Maryland Water *................. .............. 68

12 Lime and Alum Coagulation of Birmingham,
Alabama Water ................................. 69

13 MgCO3, Lime, and Alum Coagulation of
Chattanooga, Tennessee Water .................. 70

14 Coagulation of Cleveland, Ohio Water with
Lime and Alum ............. .................... 71








Table Page

15 Coagulation of Detroit, Michigan Water
by Precipitation of Magnesium Present by
Lime Addition ........................... ..... 72

16 Coagulation of Huntsville, Alabama Water
With MgCO3 and with Alum ....... .... .......... .. 73

17 MgCO3 and Alum Coagulation of Jackson,
Mississippi Water ............................. 74

18 MgCO3 and Alum Coagulation of Lanett, Alabama
Water ....................................... 75

19 Lime and Alum Coagulation of Louisville,
Kentucky Water ....... ........................ 76-

20 MgCO3, Lime, and Alum Coagulation of
Nashville, Tennessee Water ................... 77

21 MgCO3 and Alum Coagulation of Opelika,.
Alabama Water ..................... ............ 78

22 Lime, MgCO3,and Alum Coagulation of
Philadelphia, Pennsylvania Water .............. 79

23 Coagulation of Richmond, Virginia Water
With MgCO3 and Alum .,,.. ......... ....... ... 80

24 MgCO3 and Alum Coagulation of Tuscaloosa,
Alabama Water ............... ..... .............. 81

25 MgCO3, Lime, and Alum Coagulation of
Washington, D.C. Water ........................ 82

26 Comparison of Raw and Treated Chemical
Characteristics for 17 Natural Waters ........ 83

27 Economic Comparison of Treatment Methods
for 17 Natural Waters ......................... 98

28 Relationship Between Electrophoretic
Mobilities and Settled Color or Turbidity
for 12 Natural Waters .................. ......... 99

29 Required Magnesium Dose as Related to
Physical and Chemical Characteristics for
17 Natural Waters ....................... ... ..104








Table Page
30 Carbonation of Sludge Produced from the
Coagulation of 36 Liters of Synthetic Water
Containing 200 mg/1 of Organic Color and
50 mg/1 Turbidity .............................. 107

31 Carbonation of Sludge Produced from the
Coagulation of 36 Liters of Synthetic
Water Containing 200 mg/l Organic Color
and 15 mg/l Turbidity ........................... 108

32 Carbonation of Sludge Produced from the
Coagulation of 36 Liters of Synthetic Water
Containing 50 mg/l Organic Color and 15
mg/l Turbidity ................................. 109

33 Carbonation of Sludge Produced from the
Coagulation of 36 Liters of Synthetic Water
Containing 15 mg/l Organic Color and 15
mg/l Turbidity ................................ 110

34 Carbonation of Sludge Produced from the
Coagulation of 36 Liters of Natural Water
Containing 200 mg/l of Organic Color and
50 mg/l Added Montmorillonite Clay-
Turbidity........................................ 110

35 Coagulant Recovery Studies .................... 112

36 Magnesium Solubility as a Function of pH
for Coagulant Recovery Studies .................. 113

37 Evaluation of Twice Recycled Magnesium
in Coagulation of Synthetic Water .............. 115

38 Comparison of Atomic Absorption and EDTA
as Methods for Magnesium Analysis .............. 118

39 Calculated Potential Production of
MgCO3.3H20 by 20 American Cities, 1968.......... 140

40. Calculations for Potential Consumption of
MgCO-.3H20 by Water Treatment Plants
in tne United States ............................ 142


vii









LIST OF FIGURES


Figure Page
1 Effect of High pH on Poliovirus 1 (LSc) in
Flocculated (500 mg/l Ca(OH)2), Sand-
Filtered Secondary Effluents at 250C ......... 9

2 Solubility Diagram for Magnesium in Water
at Atmospheric Conditions ................... 16

3 Temperature Influence on Magnesium
Solubility .................................... 17

4 Effect of pH on Mobility for the Indicated
Coagulant Dosages ............................. 21

5 Solubility of MgCO3.XH 0 as a Function of
Time for the Indicate hydrate Forms ........ 25

6 Multiple Stirrer for Jar Tests................. 35

7 Flash Evaporator Used to Concentrate
Organic Color ................................. 40

8 Zeta-Meter Used to Determine Particle
Mobility ..................................... .... 48

9 Solubility of Mg(OH) (As MgCO. 3H20) as a
Function of pH for 21 Natural waters ............ 86

10 Treatment Cost in $/M.G. for CaO and CO2
to Raise the Raw Water pH to 10.5 and
Reduce the pH Back to pH 9.0 for Stabilization .. 88

11 Partial Treatment Costs in $/M.G. for CaO,
CO2 and MgCO3 as a Function of Coagulation pH ... 89
12 Treatment Cost in $/M.G. as a Function of the
Raw Water Total Alkalinity ..................... 91

13 Treatment Cost in $/M.G. as a Function of
Coagulation pH .................................. 92

14 Treatment Cost in $/M.G. as a Function of the
Amount of MgCO3 Precipitated .................... 93


viii










15 Settled Color as a Function of Particle
Mobility During Coagulation, Jackson,
Mississippi Water .......... ............. ... .. 101

16 Settled Turbidity as a Function of
Coagulation Mobility Lanett Water ........... 102

17 Magnesium Recovery by Carbonation ............. 111

18 Comparison of Atomic Absorption and EDTA
as Analytical Methods of Determining
Magnesium in Natural Waters .................. 117

19 Flow Diagram for Turbidity Removal Plant
Using MgCO3 and Lime Recalcining ............... 121

20 Photographic Comparison of MgCO and Alum
Floc During Rapid Mixing in the Removal of
Organic Color ................................. 125

21 Photographic Comparison of MgCO3 and Alum
Floc During Flocculation in the Removal of
Organic Color ................................. 126

22 Photographic Comparison of the Rate of
Settling for MgCO3 and Alum Flocs Formed
in the Removal of Organic Color .................. 128

23 Photo-Micrographs of Alum and MgCO3 Floc
Formed in the Removal of Organic Color,
Magnified 100 Times ................... ........... 129

24 Photo-Micrographs of Alum and MgCO3 Floc
Formed in the Removal of Organic Color,
Magnified 200 Times ............................ 130

25 Magnesium Carbonate Floc Magnified 200
Times with Calcium Carbonate Crystals Present-.. 131


Figure


Page









Abstract of Dissertation Presented to the Graduate
Council of the University of Florida in Partial Fulfillment
of the Requirements for the Degree of Doctor of Philosophy

MAGNESIUM CARBONATE, A RECYCLED
COAGULANT FOR WATER TREATMENT

By

Cliff Green Thompson

June, 1971

Chairman: J. E. Singley
Major Department: Environmental Engineering

An entirely new system for water coagulation has

been developed which allows reuse of the coagulant, lime,

and carbon dioxide produced in lime recovery. The use of

magnesium carbonate in place of alum has many advantages,

the most important being the elimination of sludge disposal.

problems which today is the most difficult problem facing

the water works industry. Magnesium carbonate hydrolyzes

with lime to form magnesium hydroxide, which has properties

quite similar to the hydrolysis products of aluminum. The

magnesium is almost completely precipitated at the high pH

range of coagulation 11.0 11.3, and can be recovered from

the sludge by carbonation and reused. Carbonation converts

the insoluble Mg(OH)2 to the soluble forms of magnesium,

MgCO3 and Mg(HCO3)2,. which can be separated from the calcium

carbonate and turbidity by vacuum filtration. The filtrate

containing the magnesium values can then be recycled and

reused while the filter cake is readily disposed of as land

fill, eliminating sludge disposal problems. The magnesium

carbonate used in this study was produced from the water


L









softening sludge at Dayton, Ohio. The new technology of

recovering magnesium carbonate from the sludges of water

plants softening high magnesium waters will make available

up to 150,000 tons per year of low cost magnesium carbonate.

This study was divided into three research areas:

the use of MgCO3 as a coagulant for both synthetic and

natural waters; the recovery of magnesium values by carbon-

ation from the sludge; and the reuse of the recovered magne-

sium for coagulation.

The results of the coagulation studies show that mag-

nesium carbonate hydrolyzed with lime is as effective as

alum for the removal of both turbidity and organic color in

both synthetic and natural waters. An equation was developed

for prediction of the required coagulant dose based on the

physical and chemical characteristics of the raw water.

Organic color had the greatest effect on the coagulant

requirements, with the type or level of turbidity exhibiting

only minimal effects. A study of various flocculants

revealed that for each water a specific flocculant was usu-

ally found superior to all others tested. In general, how-

ever, soft waters responded best to 0.5 ppm dosages of alum,

whereas either activated silica or potato starch produced

better flocs in hard waters. For most waters, measurement

of particle mobility was found to be an effective tool for

evaluating the coagulation of turbidity and organic color.

A series of curves has been prepared so that a graph-

ical solution can be made for the optimum coagulation pH









and for the cost of the lime, carbon dioxide, and magnesium

carbonate based on jar test results. The cost estimates are

based on magnesium solubility relationships found in the

coagulation studies which are considerably higher than would

be predicted by theory. The conditions of full-scale appli-

cation will probably be more favorable for more complete

precipitation of the magnesium hydroxide due to the longer

reaction time and mass action effect during coagulation.

The cost analysis, even based on conservative estimates,

indicates significant savings in treatment costs for most

waters with no consideration given for the many benefits of

this process. All of the magnesium hydroxide precipitated

can be recovered by carbonation with no problems of color

release or sludge dewatering for most waters.

The chemical characteristics of waters coagulated

with magnesium carbonate are in most cases superior to waters

coagulated with alum. When magnesium carbonate is used, the

treated waters have alkalinities ranging from 30 to 50 mg/l,

giving soft waters sufficient alkalinity for stabilization

by p1H adjustment. For water high is carbonate, hardness,

softer waters are produced by treatment with magnesium car-

bonate than with alum.


xii


I














CHAPTER 1. INTRODUCTION


Iron and particularly aluminum salts have served well

in the coagulation and clarification of water since their

common usage in the early 1900's. Many investigators con-

sider the highly hydrated and gelatinous property of the

hydrolysis products to be a main attribute for their effec-

tiveness. This property however. makes dewatering and dis-

posal of the sludge produced from the treatment process

extremely difficult and costly. Water plant wastes are

recognized today as an industry-wide pollution problem that

must be solved. It is estimated that over 1,000,000 tons of

alum sludge are produced each year with less than eight percent

receiving treatment of any kind before disposal.

The characteristics of the waste products from water

plants are highly variable both within and among plants. A

considerable effort has been made to characterize these

wastes with the following ranges in characteristics being

reported:2,3,4

Total Solids 1,000 17,000 mg/1

Suspended Solids 75% 90% of Total Solids

Volatile Solids 20% 35% of Total Solids

BOD 5$ (Ultimate BOD
coInsderably higher) 30 150 mg/1

COD (Higher value where
activated carbon present) 500 15,000 mg/1









The reduction of volume and moisture content is of

primary concern in alum sludge disposal. In a study of two

water plants, Neubauer2 found the volume of alum sludge pro-

duced to range from .12 to .26% of the total plant flow.

Methods, which have been employed with varying degrees of

success, to concentrate and dewater alum sludge include:

1) Gravity thickening, stirred thickeners, and

lamella sedimentation2,67
2,3,5
2) Lagoons23

3) Drying beds8

4) Wedge wire filtration9

5) Vacuum filtration6

6) Pressure filtration6

7) Centrifugation6
6
8) Freezing-

As a means of offsetting some of the costs for treating the

sludge, alum recovery has been attempted at several water

plants. Jewell0 in 1903 patented sulfuric acid regenera-
11
tion of alum and in 1923 Mathis obtained a similar patent.
12
In 1951 Black Laboratories2 suggested utilizing sulfur

dioxide gas from boiler stacks as a source of sulfuric acid

for alum recovery at Orlando, Florida. Roberts and Roddyl3

reported on investigations for alum recovery at Tampa,

Florida which later was practiced for a short while but was

discontinued due to operational problems. Tampa's source

of raw water varied widely in hardness and organic color

content. Aluminum sulfate was used only during times of









high organic color making recovery an intermittent opera-

tion. Higher dosages of recovered alum had to be used due

to the release from the sludge of organic color,reducing the

effectiveness of the coagulant. The Asaka Purification

Plant in Tokyo reports recovery of as much as 80% of the
14
aluminum using the sulfuric acid process. Iron or manga-

nese, which might be present in the sludge, is also solu-

bilized. This causes an increase in the concentration of

these elements, making it necessary to waste a portion of
15
the recovered alum from time to time. Alum recovery is

also practiced at the Daer Works in Scotland and is being

investigated for use at Minneapolis, Minnesota.16

Lime recovery in softening plants is practiced in

several American cities with profitable operations being

reported for two cities.1617 The excess lime produced is

sold to neighboring cities for a profit. Lime recovery is

presently economically attractive only for softening plants

using 20 to 25 tons of lime a day.

While there are many methods of treating an alum

sludge, only in unusual cases has the treatment been found

to be satisfactory or economically attractive. The AWWA

conference report on plant needs states

In summation, the principal needs are to
find effective and economical means, through
research, to dispose of water treatment plant
wastes by direct treatment of sludge, or by
eliminating undesirable chemicals, such as alum,
through changes in water treatment methods.









In answer to these needs, an entirely new system of

water treatment chemistry has been developed utilizing mag-

nesium carbonate as the coagulant. The addition of suffi-

cient lime slurry to a water containing magnesium bicarbon-

nate and/or to which magnesium carbonate has been added,

precipitates both magnesium hydroxide and calcium carbonate.

Carbonation of the sludge solubilizes the magnesium, as mag-

nesium bicarbonate, which can be recovered by vacuum filtra-

tion and the filtrate recycled and reused. The filter cake

of CaC03 and clay is easily handled and disposed of as land

fill. Lime recovery would further reduce the volume of

sludge to be disposed of.

The flocculant properties of magnesium hydroxide have

long been evident. It is these properties, however, which

have troubled conventional water softening plants. The

gelatinous nature of magnesium hydroxide, in many ways

similar to the hydrolysis products of aluminum, makes the

dewatering of the sludge difficult. Also, where recovery

of lime is practiced, the magnesium hydroxide must be sepa-

rated before calcination because of build-up of insoluble

magnesium oxide in the recovered lime. Various techniques

have been developed to separate the magnesium hydroxide from

the calcium carbonate. The use of a centrifuge to selec-

tively classify it into the centrate does not provide the

degree of separation needed. Three-phase selective soft-

ening has been used at Lansing, Michigan for some years
18
during the winter months of low water demand. In this









process, the dosage of lime added in the first phase is just

sufficient to precipitate the calcium bicarbonate and con-

vert the magnesium bicarbonate to the soluble carbonate. In

the second phase, excess lime is added to precipitate all

magnesium hardness as Mg(OH)2. This requires a lime dosage

well above stoichiometry. This second phase effluent with

a pH of about 11.3 passes to the third phase where it is

mixed with just enough raw water to utilize the excess lime

in removing calcium hardness. Phases and 3 sludges are

mainly CaCO3 phase 2 sludge mainly Mg(OH)2. Since this

process cannot be used to soften waters containing either

color or turbidity and requires extremely careful control,

it is seldom used.

Bureau of Mines Technical Paper No. 68419 describes

an industrial process for separating MgO from its ores,

brucite or dolomite, in which the calcined and finely ground

ore is slurried and chilled. The MgO present is then dis-

solved by pure CO2 with continuous cooling to neutralize

the high heat of hydration of the MgO.

Black & Eidsness20 were able to selectively dissolve

the Mg(OHI)2 from the CaCO3 in the lime-soda softening sludge

at Dayton, Ohio, thus making it possible to recalcine the

CaCO3 and produce high quality quicklime. This sludge car-

bonation basin, the only one of its kind in the world, has

been operating successfully since 1958.

While magnesium hydroxide is generally regarded as a

liability it has been recognized as an effective coagulant.








21
Flentje, in 1927, found increasing clarification efficiency

in the water treatment plant at Oklahoma City as excess lime

was added. He reasoned this to be due to precipitation of

magnesium as the hydroxide. Several jar tests were per-

formed which indicated that magnesium, in the form of mag-

nesium chloride, is an effective coagulant. The excess lime

treatment was practiced in conjunction with ferric sulfate

on a full plant scale, to treat the hard, turbid river water.

The objective was to employ the magnesium bicarbonate natu-

rally present in the water. Flentje noted no decrease in

filter runs, less algae in the settling basins, and greater

bacteria removal. No attempt at coagulant recycle was made

and the excess lime fed was not sufficient to quantitatively

precipitate the magnesium present in the water.
22
In 1966, Lecompte reported the use of magnesium

carbonate as a coagulant for the reclamation of water within

a paper mill. Lime was reacted with magnesium carbonate,

produced by the reaction of finely ground magnesium oxide

and bicarbonate alkalinity present in the water, to precipi-

tate magnesium hydroxide. No attempt was made at magnesium

recovery. The water to be treated contained 0.5 to 1.0

pounds of suspended solids per one thousand gallons with

fluctuations in organic color. The chemical cost of the

water produced was estimated at sixty-five dollars per mil-

lion gallons with additional disinfection benefits noted due

to the excess causticity.










Although water chemists have long recognized the

effectiveness of magnesium hydroxide as a coagulant, the use

of magnesium salts has not received acceptance for economic

reasons. Both the chloride and the sulfate cost more per

pound than alum and their use, in conjunction with lime,

would increase the non-carbonate hardness of the water being

treated in direct ratio to the make-up dosage required. The

cost of magnesium carbonate currently quoted at 16 per

pound, has always been prohibitive. However, three factors

now indicate, even demand, that the widespread use of magne-

sium carbonate receive most careful consideration:

1) As stated previously, treatment of water plant

wastes is becoming mandatory. The dewatering

of this sludge is an integral part of the mag-

nesium recovery process.

2) Recovery and recycle of a coagulant hav not proven

practical in the past. An economical, easily

controlled process is now available for the

recovery of magnesium carbonate for coagulant

recycle.

3) A new low-cost source of magnesium carbonate will
23
soon be available. It will be recovered at

low cost from the sludges produced by major

plants softening high magnesium waters. Such

plants will be able to substantially reduce

their chemical treatment costs by (a) elimi-

natine the use of alum, (b) sale of recovered









magnesium carbonate and (c) recalination,

recycling and reuse of lime. Of perhaps equal

importance is the fact that in so doing, they

will have eliminated their individual sludge

pollution problems.

For many waters this new treatment method will re-

sult in considerable economic savings, and for all waters,

it will solve the problem of sludge dewatering and disposal.

As coagulation will take place generally in the pH range of

11.0 to 11.4, the need for prechlorination should be mini-
24 25
mized and in many cases eliminated. Houston2 and Hoover25

were among the first investigators to report the effect of

high pH on disinfection in water treatment. In 1952, Riehl

et al.26 reported that at a pH level of 11.0 to 11.5 and a

contact time of four hours, the removal of bacterial organ-

isms is on the order of 100%.

Alum and ferric sulfate have been shown to be effec-
27
tive in the coagulation of viruses. However, these inves-

tigators found that viruses removed in the floc fraction

were not destroyed and active virus can be recovered from

the floc. Berg et al.28 have found that disinfection of

polio virus can be accomplished by high pH. Figure 1, from

this publication, shows the effect of pH on the survival of

polio virus as a function of time. It can be concluded that

bacteria and virus not only can be removed by the new treat-

ment process but disinfection of the organisms will also

take place.

















100 _










I ^<
O m







-- -











1 pH 10.1 --------
-- ~ ~ ~ ~ ~ -- 0--- n108--*--- -- ---- ---





o----o pH 10.8
S .----- pH 11.1 -


0 20 40 60 80 100 120 140
Time-min
Fig. 1. Effect of High pH on Poliovirus 1 (LSc) in Flocculated (500 mg/1 Ca(OH)2),
Sand-Filtered Secondary Effluents at 250C

(from Berg et al.28)









In this high pH range of coagulation, complete pre-

cipitation of iron and manganese should occur, possibly elim-

inating the need for more costly treatment methods. This pH

environment would be unfavorable for aquatic growths in set-

tling basins. The overall effect would be reduction in thd

use of chlorine and subsequent cost savings at the same time

increasing the treatment efficiency.

In initial studies of new technology, important areas

of research must be left for future investigations because

of time limitations. The use and recycle of magnesium car-

bonate is an entirely new concept in water treatment chemis-

try. Initial research efforts have been planned to deter-

mine if this process is technically and economically feasi-

ble. The scope and objectives of this research were there-

fore as follows:

1) Evaluation of the parameters involved in the use

and recycle of magnesium carbonate as a coagu-

lant for both organic color and turbidity in

soft waters. Studies of both synthetic and

natural waters are included in this phase of

the research.

2) Development of a predictive equation to determine

the magnesium requirements based on the physi-

cal and chemical characteristics of a water.







11

3) Demonstration of the effectiveness of this new

process on a broad spectrum of natural waters.

Waters from the largest cities in the country

were chosen to provide a wide spectrum of range

in chemical and physical characteristics.

4) Estimation of the chemical cost of treatment using

this new technology and comparison with the

chemical costs using alum treatment.

5) Comparison of the chemical characteristics of the

treated waters using magnesium carbonate and

alum treatment.













CHAPTER 2. THEORETICAL CONSIDERATION


Magnesium Chemistry

Magnesium Equilibrium in Water

Magnesium is present to some extent in almost all

natural waters. As a rule, magnesium content increases with

increasing water hardness. The ratio of Mg /Ca++ is quite

variable but almost always less than 1.

In Peason's, system of classifying metals,29 magnesium

is classed in group A, the same as aluminum. The elements

of this group are visualized as having spherical symmetry

with the electron sheaths not readily deformed by adjacent

charged ions. Metals in this classification tend to form
-2 -3
insoluble precipitates with OH CO and PO4 with simple

electrostatic binding of cation and ligand used to explain

complex stability.

In natural water systems, magnesium can be found in

many solid phases. Considering only a system composed of

carbon dioxide, magnesium, and water, one can calculate

which solid phase controls magnesium solubility. The solid

phases of magnesium present are:








AG30 -log Ko0
(KCal mol )

1) Brucite Mg(OH)2
Mg(OH)2(s) t Mg+ + 20H- -15.8 11.6

log ,, E~g++] =
log [-g- = -pKso + 2pK 2pH
[Mg(OH )2]

log [Mg++] = 16.4 2pH

2) Magnesite MgCO3
MgCO3(s) Mg"' + CO3 6.7 4.9

log Mg++] = -pKso logCT log

log [Mg ] = -4.9 logCT log a2

3) Nesquehonite MgCO3.3H20
MgCO 33H20(s) Mg++ + CO3 + 3H20 +7.4 5.4

log [Mg+ = -pKso logCT log a

log [Mg++] = -5.4 logC log a2
^T








A G30
AGl mo
(KCal mol 1)


S 30
-log K
so


4) Hydromagnesite Mg4(C03)3(OH)-23H20

Mg4(C03)3(OH)2-3H20 t 4Mg+2 + 3C03-2 + 20H- + 3H20

log [Mg++]


= -1/4pKs + 1/2pK2 3/4 logC
logT


- 3/4 log a2 1/2pH


= -.4 3/4 logCT 3/4 log a2 1/2 pH
T


+40.2


29.5







15

As Nesquehonite is less soluble than magnesite at all pH

values, magnesite will not be considered. In Figure 2, a'

pH-stability diagram is shown for a total carbonate concen-
_3
tration of 103M. Brucite is by far the least soluble at

pH values above 9 with hydromagnesite controlling solubility

from pH 9 to approximately 7.5. Nesquehonite is the least

soluble at pH values below 7.5. Dolomite, CaMg(CO3)2, is a

very common stable phase found in nature but attempts to

precipitate a dolomite phase from supersaturated solutions
31
under atmospheric conditions have been unsuccessful.

Considerable effort has been expended in determining

the solubility product-constant for Mg(OH)2. The following

table lists some of the values reported in the literature.

Investigator toC pkp

Gallaher32 25-30 11.28
Ryzner et al. 80 11.28
Krige and Arnold34 20 10.85
Travers and Nouvel35 18 10.60
Kline36 25 11.00
37
Britton37 Room 10.64
Bube38 25 10.92
Gjaldbach39 18 10.92
Dupre and Bialas40 18 10.92
Herz and Muhs41 29 10.31
Kohlrausch and Rose42 18 10.87
Loven3 10 10.76

Magnesium hydroxide becomes less soluble at increased

temperature. Figure 3 taken from Larson, Lane, and Neff4


shows this effect.



























-I-




-2- I- MgCO33H20
2-Mg4(CO3)3(OH)2 3H20
3-Mg(OH)2

-3



-4.




-5




5 7



FIG. 2 SOLUBILITY DIAGRAM
CONDITIONS. TOTAL


/ -.
/ -
/
/
A


FOR MAGNESIUM IN WATER AT ATMOSPHERIC
CARBONATE 10' M









































0 50 70 90 110 130 150 170 190 210
Temperature F
Fig. 3 Temperature Influence on Magnesium Solubility (from Larso, Lane,
and Neff )
The dashed curves represent magnesium solubility (as
parts per million CaCO ); the solid curves, pH
variation. The solubility curves are based on the
35solubility product constants of Travers and Nouvel
solubility product constants of Travers and Nouvel.


.12.0


j 10.0









The solubility products reported were for pure dis-

tilled water systems, extrapolated to zero ionic strength.

Many factors tend to increase the solubility of magnesium

in natural waters. Solubility increases with increase in

ionic strength as expressed by the Debye-Huckel relationship:

pK = p K (nZM2 + mZN2)(1
so so +

where:

MnNM(s) Z nM + mN

Kso [M]ntN]m A n Am
so M N

u = ionic strength

An illustration of this effect on the Ksp for Mg(OH)2 using

a pK = 11.0
u = 0 u = .01 u = .1 u = .3
pKsp 11.00 10.73 10.20 9.95

Complexation of the magnesium with both organic and inorganic

ligands increases the solubility. The formation of ion pairs

also tends to increase the solubility. Ion pairs differ from

complexes in that the metal ion and the base are separated by

one or more water molecules while for a complex the ligand is

immediately adjacent to the metal cation.45 It is reported

that while complex former present in solution may often have

little or no effect on the solubility of solids, they may

however affect the kinetics of nucleation and of growth and

dissolution of crystals.4

Lime is commonly used to precipitate magnesium from

water as magnesium hydroxide. The hydroxide concentration








of the water can be increased to the necessary level only
after converting all of the CO2 and HCO3 to CO3 These
well-known softening reactions are:
1) CO2 + Ca(OH)2 : CaCO3 + H20
2) Ca(HC03)2 + Ca(OH)2 t 2CaCO3 + 2H20
Magnesium bicarbonate is converted to magnesium car-
bonate and magnesium hydroxide on further addition of lime
as:

3) Mg(HC03)2 + Ca(OH)2 t MgCO3 + CaCO3 + 2H20
4) MgCO3 + Ca(OH)2 < Mg(OH)2 + CaCO3
If the magnesium in the water is non-carbonate hardness,
there would be no net change in total hardness, only an
exchange of calcium for magnesium as:
5) Mg++ SO4 + Ca(OH)2 Mg(OH)2 + Ca + SO4
Magnesium carbonate used as a coagulant does not add
to the total dissolved solids as shown in equation (4).- The
lime dosages necessary for coagulation and softening can be
calculated as:

Reaction Lime required, mg/l of Ca(OH)2

CO2 + Ca(OH)2 CO2 x Ca(O2 =74


Ca(OH) 74
2(HC03) + Ca(OH)2 Alk (as CaCO3) x CaCO 2 0=

Ca(OH)2 74
MgCO3.3H20 + Ca(OH)2 MgC03 3H20 x MgCO3.3H20 138=


Mg ++ (Ca(OH2 74
Mg + Ca(OH)2 Mg (CaCo3) x CaCO3 100









In practice 90% pure lime CaO would be slaked and used.

Thus, the total lime dosage found above should be multiplied
100 56 CaO
by 90 74 Ca(OH)2 or 0.82 times the Ca(OH)2 value determined.

CaCO3 suspended in water has been found to be nega-

tively charged while magnesium hydroxide is positively
46
charged.46 While the particles have been found to coexist,

absorption usually takes place and one predominates, giving

the floc either a net positive or negative charge. For a

water containing both calcium and magnesium, the mobility

tends to become less negative as the pH increases. Figure 4

demonstrates this effect found in the coagulation study of

water used by Montgomery, Alabama. This is due to formation

of Mg(OH)2 which can cause charge reversal if sufficient mag-

nesium is present. Flocculation-of calcium carbonate sus-

pensions using coagulant aids is not necessarily accompanied

by a decrease in negative mobility. 4 These investigators

reported that mobility in itself is not a reliable indicator

of the degree of flocculation.

Salts other than magnesium carbonate could be used as

the source of magnesium. Once the magnesium is recycled,

it would be in the carbonate or bicarbonate form. However

any make-up magnesium salt, such as MgSO4 or MgCI2, would

increase the non-carbonate hardness as shown in reaction 5.

Magnesium Recovery

As discussed in the introduction, the solubilization

of magnesium by carbonation has been practiced by industry






























10.9 -



10.8



10.


::. 1. .12 .: .

Mobility(-) u/lec/v/cm


FIG. 4 EFFECT OF pH ON MOBILITY FOR THE
INDICATED COAGULANT DOSAGES









for many years. However, such processes have generally been

carried out with supersaturated magnesium solutions and pure

CO2. While these processes must be carefully controlled,

magnesium recovery from water plant sludges is quite simple,

with little control required. The reactions which take place

are:

Mg(OH)2(s) + CO2 MgCO3 + H20

MgCO3 + CO2 + H20 + Mg(HCO3)2

Whether the reaction occurs in one or two steps is not

known.

Black and Eidsness,20 carbonating a sludge containing

Mg(OH)2 and 36 g/l of CaCO3 with 11% C02,found that only 80
mg/l of CaCO3 was dissolved after 30 minutes'carbonation at

a gas flow five times that required to dissolve all of the
47
Mg(OH)2 present. According to Johnston, who studied the
solubility of calcium and magnesium carbonates in natural

waters, the equilibrium ratio at 160C is [Mg++]/[Ca++ =

14,000 when the partial pressure of CO2 in the atmosphere

is great enough to prevent precipitation of Mg(OH)2.

Another explanation for teise phenomena is that a saturated

solution of Ca(HCO3)2 has a lower pH than a saturated solu-

tion of Mg(HCO3)2. As carbonation proceeds, the pH is

buffered at a pH of approximately 7.5, due to the Mg(HCO3)2,

allowing little of the calcium to dissolve.

Magnesium hydroxide may also react with the bicarbon-

ate to produce magnesium carbonate as:









Mg(OH)2 + Mg(HC03)2 + 2H20 o 2MgCO3 3H20

If complete solution of Mg(OH)2 is desired, obviously pre-

cipitation of MgCO33H20 should be avoided. In practice,

this is avoided by incremental addition of fresh sludge to.

the carbonation basin and maintaining a sludge-water ratio

such that a super-saturated solution of Mg(HCO3)2 is not

produced.

Production of Magnesium Carbonate

At present magnesium, carbonate is produced from four

major sources.48

1) From sea water without evaporation, using sea

water and lime as the principal raw materials.

2) From bitterns or mother liquors from the solar

evaporation of sea water for salt.

3) From deep-well brines.

4) From dolomite.

Investigators are not in agreement regarding the

formulae for the several forms of magnesium carbonate. For

this dissertation it will be assumed that at least three

salts may be prepared by aerating an aqueous solution of

magnesium bicarbonate: the penta-hydrate MgCO3.5H20 pre-

cipitated below 13.5C; the tri-hydrate MgCO3-3H20 precip-

itated between 13.5 C; and a "basic carbonate" whole com-

position is most commonly given as 4MgCO3.Mg(OH)2"x H20

precipitated above 50 C, most rapidly and completely by

boiling. Both the penta-hydrate and the tri-hydrate slowly









revert to the basic carbonate, 5 Mg*04C02.xH20, upon exposure

to the atmosphere. This reversion is accelerated when mois-

ture is present and at elevated temperatures. When heated

to 1000C, dry MgCO3'3H20 is quite stable.49 MgCO3.3H20

exhibits an interesting change in solubility on heating to

1000C. Figure 5 demonstrates this increased solubility

effect. The data for this figure were collected from ana-

lytical studies of the MgCO 33H20 sludge produced in Dayton,

Ohio. It is .assumed that the conversion to the basic car-

bonate involves recrystallization of the aqueous solution.

At 2000C, dry material loses water and CO2 without the addi-

tion of water. Possibly partial decomposition furnishes some
49
water which can then assist further conversion.

Magnesium carbonate, which is used primarily in the

paint, printing, rubber and pharmaceutical industries,sells

from $.16/lb for the technical grade to $.22/lb for the USP

grade.50 Most of the product produced today is the basic

carbonate, 4MgCO3 Mg(OH)2'xH20.

As discussed in the introduction, a new source of

magnesium carbonate will be soon available at a greatly re-

duced cost. A process has been developed by A. P. Black and

the city of Dayton, Ohio to recover it from water softening

plant sludges.23 preliminary calculations, included in the

appendix, indicate that as much as 150,000 tons of magnesium

carbonate (MgCO3'3H20) can be produced each year by the

twenty cities shown. Substitution of MgCO3'3H20 for alum in

the more than 4,000 water treatment planes now using it


























0A16


o0



SE o Heated to 103*C for I hr. as MgC03-3HZ0
I- 200*C for 2 hrs. as MgC03-3H20
o 200*C tor 2 hrs. as MgCO3"ZH20
S- Air dried as MgCO 3H20

4-




2 4 6 8 10 12 14 16 18
TIME (Min.)


FIG. 5 SOLUBILITY OF MgCO-sXH20 AS A FUNCTION OF
TIME FOR THE INDICATED HYDRATE FORMS









would require approximately 100,000 tons per year, assuming

85% recovery and re-cycling of the magnesium and 15% make-

up. These calculations are also included in the appendix.

The cost to produce MgCO3'3H120 with this new techno-

logy has been estimated to be less than $.02/lb.51


Colloidal Destablization


Colloidal destablization is believed to occur in two

steps. The first, which is assumed to occur very rapidly,

has been referred to as perikinetic coagulation52 or coagu-
53
lation.53 In this step, chemical and physical interaction

between the colloid to be removed and the coagulant takes

place. Two broad theories have been advanced to explain

the mechanism. The older, chemical theory, assumes stabi-

lization to be due to chemical interactions, such as com-

plex formation and proton transfer. The physical theory

emphasizes the concept of the electrical double layer.

Counter-ion adsorption and compaction of the diffuse portion

of the double layer are assumed to neutralize the colloidal

charge and bring about coagulation.
52
After coagulation, orthokinetic coagulation or

flocculation50 takes place, normally requiring a longer time

period with gentle mixing conditions. During this step,

interparticle bridging of the coagulated colloids forms

larger floc particles.

The first coagulants, alum and iron salts, were

chosen for their highly gelatinous properties. Later









54,55
investigators attributed the Shultz-Hardy 55 effect as
56
the main attribute of these coagulants. However, more

recent investigators found that the hydrolysis products were
52 57 58
much more effective than the trivalent metal cations.525758

Many investigators have reported the effect of anions on the
56,57,59 The
broadening of the optimum pH for coagulation. 5759 The

displacement of hydroxide ions by highly coordinating anions

has been proposed as the mechanism for these phenomena.60

In 1928, Mattson61 demonstrated the relationship

between microelectrophoretic mobility of colloidal particles

and the aluminum salt dosages. However, this technique re-

mained almost forgotten until 1959 when Pilopovich et al.5

studied the effects of pH, alum dosage, zeta potential, and

base exchange capacity of clay particles on coagulation.

Several investigators reported that base exchange capacity
n 52,58
was an important factor in coagulation.5258 It was also

found that, while good coagulation often occurred near zero

mobility, no absolute relationship existed.58

In a series of papers, Packham proposed that coagu-

lation was due almost entirely to a physical enmeshing or

sweeping down of particles by the highly gelatinous property

of the aluminum hydrolysis products. H!e found that the

type of dispersed phase had relatively little effect on

coagulation conditions. Packham's work and other recent

investigators seem to support the early contentions that the

sticky, gelatinous, property of a coagulant is possibly most









important. The mechanism of coagulation seems to be depen-

dent upon the properties of the dispersed phase and the

conditions which are present during coagulation.


Chemical and Physical Properties of Organic Color


While the origin of organic acids found in natural

waters is still a subject of controversy, most investigators

report that it is due to aqueous extraction from soil or

decaying vegetation. Some investigators propose that color

in water is an intermediate step in the transformation of

organic matter from living or decaying woody tissue to the
62
soil organic complex.62

The structure of the organic acids has been proposed

to be aromatic with hydroxy, carboxy, methoxy, and carbox-

ylic acid groups.6 Black and Christman, using an electro-

dialysis cell with membranes of varying pore sizes, found

that 78% of the organic acid molecules were between 3.5 and

10 m.63 However, light scatter data for this same organic
64
color suggested a larger size. An elemental analysis of

organic color extracted from ten highly colored natural

waters gave the following results.63

Carbon 44.99 54.10%

Hydrogen 1.46 4.23%

Oxygen 38.76 47.93%

Some investigators have found nitrogen present, but the

carbon/nitrogen ratio is reported to be higher for more

highly colored lakes indicating nitrogen as an impurity.64









The molecular weight of the colored acids is generally

believed to range from 450to 10,000. However Gjessing, using

Dioflo ultra-filtration membranes reported approximately 85

percent of the organic acids present had a molecular weight

higher than 20,000.65

Kitano observed that organic acids influenced inor-

ganic solubility equilibrium and subsequent precipitation

products.66 Shapiro has found considerably more iron in

solution in natural waters than would be predicted by

theoretical solubility equilibria.67 He proposed peptiza-

tion of the iron by humic acids with some chelation as the
68
possible mechanism. Olcham and Gloyna propose the mecha-

nism for increased iron solubility to be the ability of the
+3 +2
humic acids to reduce Fe to its more soluble form Fe

and the subsequent complexation of the iron by the humic

acids.

Color has been found to vary in intensity as a func-
69
tion of pH. Singley et al.69 have developed a nomograph

which will correct the color intensity at any pH to that at

pH 8.3, an arbitrary standard.

Black et al.70 have found a stoichiometric relation-

ship between the ferric sulfate dosage required for satis-

factory color removal and the raw water color in a study of

colored waters from different regions of the United States.









Physical and Chemical Structure of Montmorillonite and
Emathlite Clays


Montmorillonite

The structure of this group of clays is derived from

isomorphous substitution of the prototype pyrophyllite.7

Pyrophyllite is a three-layered clay composed of two tetra-

hedral and one octahedral sheets made up of oxygen, silica,

hydroxide, and aluminum. The substitution of a lower

positive valence element for one of higher valence results

in an excess of negative charge as would be the case for the

substitution of magnesium for aluminum. This excess charge

is compensated by the adsorption, on the layer surfaces, of

cations; which are too large to be accommodated in the

interior of the lattice. These compensating cations can be

easily exchanged in the presence of water, thus they are

termed exchangeable cations. The amount that can be ex-

changed, expressed in milliequivalents for 100 grams of dry

clay, is called the cation exchange capacity (CEC) or the

base exchange capacity (BEC) of the clay.

Montmorillonite, when placed in water, undergoes

interlayer swelling which leads to an increase in clay

volume. This swelling allows exchange of interlayer cations

thus montmorillonite clay has a high base exchange capacity.

Emathlite

Emathlite or fullers earth is considered an illite

clay. It is also a three-layered clay but does not undergo









interlayer swelling. Lattice substitutions occur predomi-

nately in the tetrahedral sheet with potassium ions acting

as the principal compensating cations. Since only the

external cations are exchangeable, the cation exchange

capacity is considerably lower than for montmorillonite

clays.

Chemistry of Iron Corrosion and Control by
Calcium Carbonate Deposition

In the corrosion reaction, iron replaces the hydro-

gen ions of water at the anode while at the cathode hydro-

gen ions are removed. Under aerobic conditions the hydro-

gen ion can be removed as:

02 + 4H+ + 4e 2 2H20

02 + 2H20 + 4e 4011

2H + 2e H H2

Thus oxygen's role in corrosion is the removal of hydrogen

ions from the metal surface. This will cause an increase

in pH of the solution near the cathodic region of the cor-

roding surface. At the same time, iron passes into solution

in a ferrous condition at the anodic area such as

Fe + CO3 FeCO3 + 2e

Fe + HC03 FeCO3 + H + 2e

Feo + OH- Fe(OH)+ + 2e








Under anaerobic conditions, the rate of corrosion is a func-

tion of pH with the corrosion products normally carried away

as:

Feo + 2H+ tFe2+ + H2

The basic objective of corrosion control with calcium

carbonate is the deposition of a thin, impervious layer of

the material on the metal surface. The development and

maintenance of this layer is dependent upon many variables,

including pH and total alkalinity. The "Baylis Curve"72

developed by Baylis in 1935 describes the pH necessary to

maintain the calcium carbonate coating as a function of the

total alkalinity. Langelier subsequently developed an

equation for calcium carbonate which can be used to define

this same required pH in a more sophisticated manner. Larson

and Buswell7 4 and Ryznor7 5 developed indices which simpli-

fied the determination of the optimum pH for calcium carbon-

ate protection of the distribution system. The pH for calcium

carbonate equilibrium can be calculated but the many factors

involved makes it difficult to apply in practice. pH, temper-

ature, total carbonate concentration, total dissolved solids,

calcium, velocity of the water in the main, and the presence

of preformed crystals all affect this equilibrium. Many

investigators indicate a lower limit for alkalinity and hard-

ness of 35 to 40 mg/1 where calcium carbonate precipitation

is employed for corrosion control. It has been established

that the calcium carbonate deposits formed in low alkalinity

waters are large and irregular while in high alkalinity









waters dense, uniform coatings with small anodic and cathodic

regions are found, offering better protection against corro-

sion.76 There is evidence that the rate of corrosion can

increase in low alkalinity and hardness waters where an

attempt is made to employ calcium carbonate precipitation.7

This has been related to a high pH differential between the

anode and cathode because of reduced buffer capacity of the

water at the elevated pH.















CHAPTER 3. EXPERIMENTAL 4MTERIALS AND METHODS


Research efforts should of necessity begin with con-

trolled basic systems and advance in complexity as informa-

tion is obtained. This study begins with synthetic water,

where system variables can be established so it is possible

to study a single variable at a time. Many methods have been

employed to evaluate coagulation processes78 but the jar test

has been the most widely used and was the primary method

chosen for this study. An improved version of the jar test

apparatus was used as shown in Figure 6. The jar test con-

sists of a series of jars, containing the adjusted para-

meters under study, with mixing provided to simulate actual

plant conditions. Normally a settling period follows mixing,

where settling can be evaluated. Modifications have been

made in order to increase the information obtained. The

parameters measured during this study included:

1) Coagulation pH

2) Forms of alkalinity and hardness

3) Settled color and turbidity

4) Electrophoretic mobility



"'Manufactured by Taulman Equipment Company, Atlanta,
Georgia.












































FIG. 6 MULTIPLE STIRRER FOR JAR TESTS









5) Residual magnesium

6) Hardness, alkalinity and color of stabilized

water

7) Visual observation of floe properties and settling

rates.

Coagulant recovery was. studied in detail for both

synthetic and natural waters. A volume of water was coagu-

lated to produce from one to two liters of sludge which was

then carbonated, monitoring calcium, magnesium and organic

color released. The recovered magnesium was reused in order

to evaluate any change in coagulation effectiveness. Some

filtrability studies of the carbonated sludge were performed.


Materials


Montmorillonite and Emathlite Clay Suspensions

The montmorillonite was montmorillonite #23 (Bentonite)

obtained from Ward's Natural Science Establishment, Inc.,

Rochester, New York. The emathlite was obtained from Mid-

Florida Mining Company, Lowell, Florida.

Organic Color

Approximately 160 liters of highly colored water was

collected from runoff in the Austin Carey Forest, near

Gainesville, Florida. The water was very low in turbidity

and ionic strength.









Magnesium Carbonate

The magnesium carbonate was prepared from water

softening plant sludge at Dayton, Ohio. The wet magnesium

carbonate was shipped to Gainesville where it was air dried.

The analysis for alkalinity and magnesium of a solution

containing .5g of the material allowed calculation of the

hypothetical formula, which was found to be the tri-hydrate

of magnesium carbonate, MgCO3 3H20. A chemical analysis

performed by the Research and Analytical Laboratory of the

Monsanto Chemical Company, Dayton, Ohio, of a similar batch

of magnesium carbonate produced in-April of 1970 indicated

the following composition:


Constituent
Magnesium Oxide, MgO
Calcium Oxide, CaO
Carbon Dioxide, CO2
Silicon Dioxide, SiO2
Aluminum Oxide, Al203
Ferric Oxide, Fe203
Sulfur Trioxide, SO3
Chloride, C1
Total Insolubles
Loss on Ignition


Percent by Weight
29.44
0.07
32.50
<0.01
0.005
<0.01
<0.01
<0.001
<0.01
70.67









Flocculant Aids

The flocculant aids studied included an anionic
,. -,- I,..,- ,
potato starch, Hamaco 196, Alum, AP30, and activated

silica.

Synthetic Water Constituents

Reagent grade CaCl2, NaHCO3, and K2S04 were used to

prepare stock solutions for adjusting the calcium, alkalin-

ity, and sulfate concentrations of the synthetic water.


Preparation of Materials


Clay Suspensions

Both clays were pulverized by jar milling for twenty-

four hours. Approximately 20 grams of the pulverized clay

and 10 grams of reagent grade sodium chloride were added to

four liters of water. The slurry was mixed for twenty-four

hours and then dewatered using No. 40 Whatman filter paper

in a Buchner funnel. The clay was washed with distilled

water and resuspended in four liters of distilled water.

After several hours of mixing, the slurry was allowed to

settle to remove the larger clay particles. The supernatant

was withdrawn for use as a stock turbidity solution.



"A product of Staley Manufacturing Division, Decatur,
Illinois.
""Certified Aluminum Sulfate Crystals, Al2(SO4)3.18H20.
***A product of Dow Chemical Company, Midland, Michigan.

A product of Philadelphia Quartz, Philadelphia,
Pennsylvania.









This process was similar to that used by Black and
79
Hannah to give a more uniform suspension, allow greater

precision of measurement, and to promote exchange reactions

due to the high zeta potential associated with the sodium

form of the clay. These authors, using the same clays,

found the base exchange capacity of fullers earth to be 26.5

milliequivalents per liter and that of the montmorillonite

to be 115 milliequivalents per liter. The base exchange

capacities of these clays were determined by the ammonium

acetate method used in soil analysis.80

Organic Color Concentrate

A highly concentrated, pure form of naturally occur-

ring organic color was needed. Various methods have been

employed to concentrate organic cclor such as vacuum distil-

lation, carbon adsorption, freezing, and ion exchange.

Vacuum distillation was chosen because of its simplicity,

availability of a large vacuum still, and reportedly minor

effects on the chemical nature of organic color.

The water collected was first filtered through Whatman

41 ashless filter paper. The color was then concentrated
3-
using a Precision Scientific Flash evaporator as shown in

Figure 7 The operating vacuum was maintained by a vacuum
'-'--'-
pump at 4-6 cm of mercury and a temperature of less than



"Product of Precision Scientific Company, Chicago,
Illinois.
^"Product of Welsh Scientific Company, Skokie, Illinois.




























































FIG. 7 FLASH EVAPORATOR USED TO CONCENTRATE
ORGANIC COLOR









400C. The capacity of the vacuum pump limited the evapora-

tion rate to about 2.5 1/hr.

The evaporation procedure was semi-continuous. The

feed rate was adjusted to match the evaporation rate. When

the color in the evaporator reached the desired concentra-

tion, the evaporator was emptied and the procedure repeated.

The color concentrate was filtered through a series

of Whatman 40 + 41 paper then through Millipore""* .8p and

.45i filters. The concentrated color was then placed in

dialysis tubing and dialized against distilled water for

twenty-four hours. Chemical analyses of the untreated, con-

centrated, and treated concentrate are shown in Table 1.

All chemical analyses were run in accordance with the pro-

cedures outlined in Standard Methods with metal ion deter-

mined by atomic absorption analysis. The two batches of

raw water were collected to obtain the desired volume of

color concentrate. The color concentrate was stored at 40C

in tightly stoppered liter bottles.

Synthetic Waters

A synthetic water whose composition was designed to

represent, as nearly as possible, a typical soft surface

water of low alkalinity and total hardness was prepared from

the stock solutions listed elsewhere.



"'Product of Millipore Filter Corporation, Bedford,
Massachusetts.









TABLE 1


CHEMICAL ANALYSIS OF ORGANIC COLOR


pH
Conductivity (pmho/cm)
Color (pH 8.3)
Acidity (mg/l CaCO3)
COD (mg/l)
TS (mg/1)
VSS (mg/1)
NH3N (mg/1)
Organic N (mg/1)
TOC (mg/1)
C/N Ratio
ZN (mg/1)
Cu (mg/1)
MN (mg/l)
Fe (mg/1)
Mg (mg/1)
Na (mg/1)
Ca (mg/1)


Raw #1
4.70
48.5
700
20.1
117'
0.190
0.103
0.41
3.14
39.5
12.6
< .1
0.04
0.03
8.2
1.3
5.1
1.9


Raw #2
4.45
57.5
690
25.0
108
0.182
0.983



<.1
0.04
0.04
6/4
1.0
4.3
1.2


Concentrate
4.00
520
15,150
320
2,660
2.76
2.08



1.20
0.40
0.70
106
18
8.2
8.0


Filtered and
Dialized Concentrate
4.40
230
13,250
200
2,010
2.00
1.66



1.20
0.20
0.45
98
1 0
2.3
5.0


Color
COD
Acidity.
Conductivity
Volume


Concentration Factor
21.8
22.8
15.9
10.3
26.7









The synthetic stock solutions were prepared using

deionized distilled water so that 1 ml = 50 mg of Ca(as

CaCO3), alkalinity (as CaC03) and SO4 Working solutions

were prepared by diluting these stock solutions 10 to 1 with

deionized distilled water so that 1 ml = 5 mg of the desired

constituents.

The synthetic water had the following composition:

Milliequivalents ppm Milliequivalents ppm

Ca ------- 0.500 10.0 HCO3 ------- 0.500 30.5
Na ------- 0.500 11.5 SO2 ------- 0.500 24.0
------- 0.500 19.5 Cl- ------- 0.500 17.7
1.500 1.500

Total alkalinity as CaCO3 --------- 25 ppm

Total hardness as CaCO3 ---------25 ppm

Total dissolved solids --------- 114 ppm

Coagulants

Alum

The alum stock solution was prepared by adding rea-

gent grade aluminum sulfate to deionized distilled water so

that 1 ml was equal to 10 mg of aluminum sulfate. This

solution was stored at 4 C and used daily to prepare working

solutions by dilution with distilled water so that 1 ml =

1 mg of aluminum sulfate.

MgC03 3H2O

For dosages of less than 15 mg/l of MgCO3-3H20, it

was added as a solution containing exactly 0.5000 g of the









material in 1 liter of demineralized water. Fresh solutions

were prepared weekly.

When dosages greater than 15 mg/l were to be used,

they were accurately weighed into 15 ml beakers and quantita-

tively transferred to the stirred water sample as a slurry.

In the case of synthetic waters, deionized water was used to

prepare the slurry; for natural waters, the water itself was

used.

Flocculants

Alum

A fresh solution containing 0.1 mg/ml of A12(S04)3"

18H20 was prepared daily from a stock solution stored at

40C.

Starch

The starch solution was prepared daily by slowly

sifting 1.0 gram of starch into 1 liter of deionized dis-

tilled water and rapidly mixed with a magnetic stirrer. A

working solution was prepared by diluting 10 to 1 with

deionized distilled water so that 1 ml = 0.1 mg of starch.

Activated Silica

The activated silica solution was prepared and

activated in the following manner:

1) 10 nil of distilled water was added to a 100 ml

graduated cylinder.

2) 5 ml of 348 gram/! solution of "N" brand sodium

silicate added.









3) 5 ml of 1 N NH.C1 was added with constant stir-

ring to the graduated cylinder.

4) After 5 minutes'aging, the solution was made up

to 100 ml volume with distilled water and mixed

thoroughly.


Analytical Techniques


Determination of Turbidity and Color

A Lumetron Model 450 Filter Photometer" was used for

both color and turbidity determinations. Sufficient accuracy

was obtained using the red 650 mp filter and 75 mm cell

light path for turbidity determinations. A calibration curve

was prepared plotting optical density obtained for a sample

against the turbidity values previously obtained for the

sample using a Jackson Candle Turbidimeter as described in
81
Standard Methods. The turbidity solutions used for this

calibration procedure were prepared using the emathalite

clay stock solution.

Organic color was measured using a 560 mp filter and

the 75 mm cell light path. The calibration curve for color

was obtained by plotting optical density as a function of

various dilutions of Platinum-Cobalt Color Standard."



"Product of Photovolt Corporation, New York, New York.
-' '-
""Purchased from Fisher Scientific Company, Fair Lawn,
New Jersey.









When color and turbidity were both present in a sample,

a procedure outlined in the Lumetron Operating Manual82 was

followed. This procedure takes advantage of the fact that

organic color absorbs light more strongly at shorter wave

lengths. Color would therefore have little interference in

the measurement of turbidity. The following procedure was

used to determine color in the presence of turbidity:

1) For various levels of turbidity the optical densi-

ties were measured at 650 mp. An average value

was determined for the ratios between the

optical density at 560 mu and 650 mp. This

average value represents a constant for any

level of turbidity and will be denoted as R.

2) The optical density of the sample was determined

at 560 mp and 650 my.

3) R multiplied by the optical density at 650 mi

represents the interference due to turbidity.

Substracting this product from the optical

density found at 560 my gives a value which can

be used to determine the color from the calibra-

tion curve previously prepared.

Atomic Absorption

Iron, sodium, magnesium, and calcium were determined

by use of a Model 1301 Beckman Atomic Absorption Unit"in

combination with a Beckman DBG Grating Spectrophotometer and



"product of Beckman Instrument, Inc., Fullerton,
California.









Beckman Potentiometric Recorder with scale expander. The

procedures outlined in Methods for Analyses of Selected Metals

in Water by Atomic Absorption3 were followed. The standards

were prepared as described with the exception of iron, for

which reagent grade ferrous ammonium sulfate was used to pre-

pare the standard solution. A calibration curve was obtained

each time the samples were run, plotting absorbance versus

concentration.

Electrophoretic Mobility

The electrophoretic mobility determinations were made

using a Zeta-Meter, shown in Figure 8. The samples were

analyzed immediately after collection using the 8 power

microscope objective and a two-hundred volt potential. The

procedure outlined in the Zeta-Meter Manual was followed

for all determinations. Normally 10 particles were tracked

for each sample.

Stabilization of Treated Waters

In order to make possible a comparison of both physi-

cal and chemical parameters of waters coagulated with magne-

sium and with alum, all samples were stabilized to pH 9.0.

Waters coagulated with MgCO3 were stabilized with CO2. Those

coagulated with alum were stabilized with freshly filtered,

saturated lime water.


p..Product of Zeta-Meter, Inc., New York, New York.

























* I-


w-wg


III111


FIG. 8 ZETA-METER USED TO DETERMINE PARTICLE MOBILITY


Si\


#I-


ii"`









Stabilization of Water Coagulated With Alum

Approximately 300 ml of settled water, filtered if

necessary, was transferred to a 500 ml beaker, placed on a

magnetic stirrer and titrated with clear saturated lime water

to pH 9.0, measured by a glass electrode. The sample was

then filtered through Whatman No. 40 paper and color, total

alkalinity, total hardness, calcium and magnesium determined.

Stabilization of Water Coagulated With Magnesium Carbonate

Approximately 300 ml of settled water was transferred

to a 500 ml beaker, placed on a magnetic stirrer, approxi-

mately 1 g of reagent grade powdered CaCO3 added and the

suspension carbonated by blowing through a pipette with rapid

mixing. Three to five minuteswere required to reduce the pH

to 9.0, measured by a glass electrode, as above. The suspen-

sion was then filtered thru Whatman No. 40 paper and color,

total alkalinity, total hardness, calcium and magnesium

determined.

Alkalinity

The alkalinity titrations were performed using 0.02 N

H2SO4 with phenolphthalein and methyl purple indicators as

described in Standard Methods. The sulfuric acid was

standardized using standard 0.02 N sodium carbonate, also

as described in Standard Methods.

Hardness

Total and calcium hardness were determined by titra-

ting with carefully standardized EDTA, following exactly the









procedures as described in Standard Methods. Many determi-

nations were checked by atomic absorption.

pH Measurement

All pH measurements were made using a Corning Model.7

pH Meter with a Corning Combination glass and Ag/AgCl,

electrode. The pH meter was calibrated daily using solutions

prepared from concentrated standard buffer solutions pur-

chased from W. H. Curtin and Company.


Jar Test Procedures


The jar test procedures were very similar for the

natural and synthetic waters and the discussion will be ap-

plicable to both series. The procedure outlined will follow

chronological order with the differences between the series

discussed in the order in which they occur. In every in-

stance where magnesium is used, it is added in the tri-

hydrate form, MgCO3'3H20. In this text and tables it has

been referred to as magnesium carbonate or MgCO3.

Preliminary Determinations

Chemical and physical analyses were performed on each

natural water prior to jar testing. These tests included

pH, color, turbidity, alkalinity, hardness, and magnesium.

A sample of each natural water was filtered through No. 40



"Corning Glass Works, Philadelphia, Pennsylvania.









Whatman filter, acidified to approximately pH 2 with concen-

trated HC1, and stored in a glass bottle for analysis by

atomic absorption for magnesium and iron.

The coagulant dosages were chosen to give undertreat-

ment of the water at the lower dosages and overtreatment at

the higher dosages. Based on previous experience, this range

in chemical dosages could usually be determined from the

results of the chemical and physical analyses. For synthe-

tic waters, these parameters were, of course, chosen for

each jar test.

For both, the quantity of water to total 1 liter after

the addition of all dosages was calculated and added to each

jar.

Details of Jar Test Procedure

For studies where the magnesium carbonate was added

as a slurry, at least two minutes of mixing at 100 RPM was

provided after the slurry addition. The lime slurries were

then added to the jars. The initial addition required

approximately one minute with two additional minutes needed

to rinse the six beakers in order to complete the quantita-

tive transfer of the lime slurry. When flocculant aids were

used, they were added approximately three minutes after the

lime addition. Incremental addition of starch was evaluated

using six dosages, one minute apart. Three were added dur-

ing rapid mix and three during the flocculation period.









Samples for electrophoretic mobility determinations

were taken during rapid mixing, approximately one minute

after flocculant aid addition or approximately three minutes

after lime addition when no flocculant aid was used. The

mixing speed was then slowed to 10 to 12 RPM and maintained

for 15 minutes. After visual observations of the floe

characteristics, 100 ml samples were collected and filtered

through Whatman No. 40 filter paper for immediate determina-

tions of alkalinity.

After the flocculation period, mixing was stopped and

the jars allowed to settle for twenty minutes. At that time

samples of the supernatant were taken for color and turbi-

dity analysis. pH determinations were then made on all jars

and the water in selected jars was stabilized, filtered and

analyzed.

The studies using alum were performed in a similar

manner. For several very low alkalinity waters pre-lime was

added first, using a saturated calcium hydroxide solution to

increase the total alkalinity of the water. Electrophoretic

mobilities were not determined on these waters.


Recovery Studies


The recovery of magnesium from the sludges produced

in coagulating both synthetic and natural waters was eval-

uated. The synthetic waters were prepared to give a range

in organic color of from 15 to 200 and a montmorillonite

turbidity range of from 15 to 50. Coagulation was carried









out in a forty-liter Pyrex jar usirg a small Lightning mixer

with a -rheostat to control the mixing. The quantity of

water to total 36 liters after the addition of all dosages

was added to the jar. The salt solutions were then added

using the concentrated stock solutions to reduce the volumes

added.

As before, coagulant dosages were estimated from pre-

vious jar tests. The magnesium carbonate was vigorously

slurried and quantitatively added to the rapidly mixed water.

After approximately three minutes, the lime slurry was added.

Five minutes after the lime addition, the alum was added and

the rapid mixing continued for two additional minutes. The

mixing was then slowed and maintained for twenty minutes at

a speed which would keep the floc in suspension.

The floc was allowed to settle for a period between

several hours and overnight in some cases. The clear super-

natant was carefully syphoned from the sludge layer and a

composite sample collected for analyses.

The sludge was then poured into a 2 liter graduated

cylinder and measured. In all but the first two experiments

the volume was then made up to 2 liters with distilled water

before carbonation.



*Mixing Equipment Company, Rocheote', New York.









Sludge Carbonation

Carbonation of the sludge was performed using a

cylinder of specially prepared gas containing 15% CO2 and

85% air. A 2 liter graduated cylinder was placed on a large

magnetic stirrer for continuous mixing during carbonation.

The flow of CO2 was regulated using a gas pressure regulator,

so that fine, well dispersed bubbles were produced. A car-

borundum stone diffuser was used to disperse the CO2 into

the sludge with no attempt made to measure the gas flow rate.

Fifty-milliliter samples were taken at predetermined

time intervals and filtered through Whatman No. 40 filter

paper. pH determinations were made on the filtrate; 10 ml

samples were titrated for alkalinity, and a dilution of the

remainder prepared for color analysis. After organic color

had been determined, the samples were acidified and stored

for future analysis for magnesium and calcium by atomic'

absorption. The sludge was carbonated in most cases until a

pH in the range of 7.5 to 7.0 was reached.

The remaining sludge was filtered through No. 40

Whatman paper using a vacuum flask and Buchner funnel.

Several filterability studies were made using polymers and

calcium carbonate as filter aids. Two general methods of

evaluation were employed determination of the time to

dewater 100 ml of the sludge and determination of the total

volume that could be filtered before clogging occurred.









Separan AP30" was used in the polymer evaluation.

Incremental addition of 1 mg/l of the polymer, followed by

determination of the time for filtration of 100 ml of the

sludge provided data used to determine the effect of the

polymer on sludge filterability.

The filtrates from several of the recovery studies

were stored to be used as recycled coagulant.


Coagulation Using Recovered Magnesium Bicarbonate


Coagulation, using both the standard jar test appa-

ratus and the 40 liter Pyrex jar with the variable speed

Lightning mixer, was evaluated using recovered magnesium.

The required volume of recovered magnesium bicarbonate to

give the desired coagulant dosage was added and the coagu-

lation tests performed as discussed previously.

The coagulation of selected synthetic and natural

waters was repeated, using the solutions of magnesium bicar-

bonate recovered as described above, and results `identical

with those obtained with the original magnesium carbonate

were obtained. This was done with jar tests and with

"recovered" coagulant in the 40 liter vessel.


*A product of Dow Chemical Company, Midland, Michigan.










CHAPTER 4. RESULTS AND DISCUSSION


Coagulant Studies of Synthetic Waters

Emathlite clay turbidity was used in the first

studies of synthetic waters. An experiment was designed

to determine the relationship between the level of turbi-

dity and/or organic color present and the dosage of magne-

sium carbonate required for satisfactory treatment of the

water. The alkalinity and hardness were held constant at

25 mg/l as CaCO3. An acceptable treatment would give a

settled turbidity less than 3.5 mg/l and color less than 15

mg/l. A minimum of six jars were required to determine the

lowest dosage of magnesium carbonate for each combination

of color and turbidity. Table 2 summarizes the data used

in the development of this relationship for emathlite tur-

bidity.

TABLE 2

MAGNESIUM CARBONATE REQUIRED FOR COAGULATION OF
ORGANIC COLOR AND EMATHLITE
TURBIDITY

MgCO3 Color Turbidity
4 15 60
20 50 60
90 200 60
20 50 20
90 200 20
90 200 100
10 50 100
50 100 100









A stepwise, linear regression equation was calculated
85
using a BMDO2R Computer Library program.8 The general form

of the regression equation was:

Y = A + blX1 + b2X2

where:

Y = magnesium carbonate dose

A = constant

X1 = the variable, either color or turbidity, which

is most significant in reducing the total

sums of squares

X2 = the variable remaining

b = regression coefficient for X1

b2 = regression coefficient for X2

The equation resulting is:

Y = -3.95 + .48 color + .02 turbidity

For the data shown, color and turbidity account for 98.67%

of the variations in the required magnesium dosage with a

highly significant F value of 44086 and standard error of

the estimate of 5.22.

Lime along with a flocculant, starch, was found to

satisfactorily flocculate the emathlite turbidity as shown

in Table 3. Possibly the fine particles of turbidity served

as a nucleii for calcium carbonate precipitation which was

in turn agglomerated by the starch to a size which would

settle.

Magnesium carbonate's effectiveness in color removal

is demonstrated in Table 4. The color present seemed to improve










LIME AND


TABLE 3
MgCO3 COAGULATION OF A FULLER'S EARTH TURBIDITY,


SYNTHETIC WATER


Characteristics of raw water
Alkalinity as CaCO3 25
Total Hardness as CaCO3 25
pH. ......... ...8.30
Organic Color 0
Turbidity ...... 100
Type Clay Emathlit- r.Ly


:0 o
Dosage in ppm 1 j Alkalinity H Alkalinity Hardness oj
r- 0 --
o C 0 rl r-i ) ro
Jar bO o r-i .o .0 0 C' M M o C0
Jo w oa o A o o o o 4o 0 o o to
No. uo f,-4 pH u : U U m c C NC T Cm

1 0 95 0.4 10.80 3.3 46 56 0

2 2 97 0.4 10.90 2.1 -.95 50 48 0

3 4 100 0.4 10.95 2.0 -.42 58 44 0

4 6 102 0.4 10.95 1.6 -.54 52 44 0

5 10 105 0.4 10.95 1.5 -.36 58 44 0

6 15 110 0.4 10.95 1.0 -.40 62 40 0


Comments







TABLE 4

MgCOo COAGULATION OF A HIGHLY COLORED,
FULLER'S EARTH TURBIDITY, SYNTHETIC WATER

Dosage in ppn 4 Alkalinity Alkalinity Hardness : o
S4 o 0 ( U
Jar O 0 0 0 0 i 0 0 to
NJar o n o o o o u o a 0 pc
No. uo = pH u a U A C NC T d mE

1 75 130 0.4 11.10 >50 10.0 60 118 0

2 100 144 0.4 11.10 >25 2.0 69 78 0

3 120 155 0.4 11.05 14 1.5 59 52 0

4 140 166 0.4 11.05 10 1.2 62 40 0 9.0 9 0 52 52 1 53

5 160 177 0.4 11.10 12 1.9 50 44 0

6 180 188 0.4 11.10 16 3.8 43 48 0


Characteristics of raw water
Alkalinity as CaCO3 25
Total Hardness as CaCO3 25
pH. 8.30
Organic Color .... 200
Turbidity ...... 20
Type Clay .. Fuller!s Earth


Comments









the size of the floc as well as its settleability. No

attempt was made to measure the magnesium in solution after

coagulation in these early experiments. It was found how-

ever, that good floc formation took place at a pH above

11.0; therefore the pH of coagulation was maintained from

11.0 to 11.25.

The experiments with montmorillonite clay turbidity

were designed in a similar manner to determine the effect

of color and turbidity on the coagulant dosage. The data

used to develop this relationship are shown in Table 5

below:

TABLE 5

MAGNESIUM CARBONATE DOSAGE REQUIRED TO COAGULATE
ORGANIC COLOR AND MONTMORILLONITE TURBIDITY

MgCO3 Color Turbidity
85 200 20
90 200 100
80 200 60
15 50 20
15 50 100
15 50 60
40 100 100


The equation determined is:

Y = -10.24 + .47 color + .03 turbidity

Color and turbidity account for 99.41% of the variation in

required magnesium dosage with a highly significant F value

of 710 and standard error of the estimate of 3.24. As with

the emathlite turbidity, lime, aided by a flocculant, was

satisfactory in removing montmorillonite clay turbidity.

In Table 6, the effectiveness of MgC03 in color and mont-

morillonite clay turbidity removal is shown.








TABLE 6

COAGULATION OF A HIGHLY COLORED SYNTHETIC WATER WITH


Characteristics of raw water
Alkalinity as CaCO3 25'
Total Hardness as CaCO3 25
pH. ......... 8.30
Organic Color .... 200
Turbidity ...... 60
Type Clay .. Montmorillonite


Comments


MgCO3


Dosage in ppm Alkalilkalinity Alkalinity Hardness o
H rl : -r4 0I
a o r-i 0 (U (ti
Jar to 0a a ,-i .In I cn cw P o C u
o r uo -0 -o o o o o wH
No. < pHl u 1 u j C NC T 0 M

1 40 117 .5 11.05 56 3.7-.81 68 96 0

2 45 120 .5 11.05 46 6.-.88 60 96 0

3 50 122 .5 11.05 45 12.C-.91 68 80 0

4 60 128 .5 11.05 34 12.7-.80 54 72 0

5 70 134 .5 11.05 31 2. -.91 60 72 0

6 80 140 .5 11.15 23 1.1-.80 64 72 0 9.0 14 4 46 41 0 41 9
~ ~ -- -









The use of starch as a flocculant for lime coagula-

tion was studied for both clays. Fifteen experiments were

conducted where all system parameters but starch were kept

constant. Starch dosages of .2 to 1.6 mg/l were found to

reduce the final turbidity in 6 experiments, to have no

effect in 6, and to increase the final turbidity in 3.

Three experiments were performed with all parameters but

the method of starch addition kept constant. The starch

was added as a single dose to one jar and in six increments

to the second jar as discussed in a previous chapter. The

incremental addition increased the efficiency in one test,

had no effect in another, and decreased the efficiency in

the third. Drew Floc 21, a cationic starch, was used un-

successfully in one experiment.


Study of Natural Waters

The first natural waters studied were obtained from

the Talapoosa River, a source of water for Montgomery,

Alabama. Seven sets of jar tests were performed on this water

with the results from selected jar tests shown in Table 7.

Color and turbidity removal was comparable to alum treatment.

The hardness and alkalinity of the magnesium carbonate treated

water, 44 mg/l as CaCO3, would allow p1H adjustment for

corrosion control. This would not be the case for the alum

treatment as the alkalinity and hardness were 13 and 22 mg/I

respectively. This has led to serious corrosion problems.

Water was also obtained from the Mobile River near

Mobile, Alabama and evaluated in a similar manner with the








TABLE 7

MgC03 AND ALUM COAGULATION OF MONTGOMERY, ALABAMA WATER


0 5
Dosage in ppm 4 4 Alkalinity 4 Alkalinity Hardness o
SH "H "HO

Jar E -- .n .oi ffi r' cn n & o ed Pn 0 M ,.u
o 0 o a o o o o 0 0 o 0 o
No. 0 uo U pH u a U V o u C NC T w M

1 30 125 .5 11.10 15 3.2 -.83 78 52 0

2 35 130 .5 11.20 10 1.6 -.69 76 56 0


3 45 125 .5 11.20 12 2.6 -.44 88 56 0

4 50 115 .5 11.15 9 1.6 -.40 80 60 0 9.0 6 4 40 44 0 44


5 50 125 .5 11.20 7 1.4 -.35 86- 60 0 9.0 5 3 41 44 0 44

6 2 6.3 6 0.6 -.19 0 0 6 9.0 6 4 9 13 9 22


Characteristics of raw water
Alkalinity as CaCO3 16 *
Total Hardness as CaCO3 13
pH. ......... .7.00
Organic Color .... 50
Turbidity ...... 165
Type Clay ...... .. Natural


Comments









TABLE 8


MgCO3 AND ALUM COAGULATION OF MOBILE RIVER WATER, MOBILE, ALABAMA

Dosage in ppm 4 Alkalinity Alkalinity Hardness j C

Jar W o ,-1 w a o 0 n cl n u
u 0 0 o o U 0 0 0
No. uo pH u a 0 o o o C NC T

1 30 130 .5 11.15 10 2.0 -.78 86 48 0

2 35 130 .5 11.15 10 1.6 -.69 76 56 0

3 45 115 .5 11.20 13 2.5 -.45 84 56 0 11

4 45 125 .5 11.25 12 2.6 -.44 88 56 0 10

5 40 115 .5 11.10 10 2.6 70 50 0 9.0 9 8 44 52 1 53

6 0 023 7.2 6 2.0 .55 0 0 33 9.0 8 8 30 38 14 52


Characteristics of raw water
Alkalinity as CaCO3 42
Total Hardness as CaCO3 42
pH. ......... 6.95
Organic Color .... 33
Turbidity ...... 39
Type Clay ..... ..Natural


Comments









selected results for both treatment methods shown in Table

8. It was found that very small dosages of alum were very

effective as a flocculant aid. In seven sets of jar tests

with alum addition the only variable, a 0.5 mg/1 dosage of

alum, gave an average of 17% settled color reduction and

50% turbidity reduction as shown in the Table 9.


Table 9

EFFECT OF ALUM AS A FLOCCULANT AID IN COLOR AND
TURBIDITY COAGULATION WITH MAGNESIUM CARBONATE


Montgomery







Mobile


MgCO3
50
50
50
45
45
50
50

40
40
40
40
40
40
40
40
40
40
40


LH
11 0
11.30
11.30
11.25
11.25
11.00
11.00

11.00
11.00
11.00
11.00
11.00
10.95
10.95
11.05
11..05
11.15
11.15


Alum
0
0.5
0.75
0
0.5
0
0.5

0
0.25
0.50
1.00
1.5
0
0.5
0
0.5
0
0.5


Settled
Color
10.8
8.7
9.0
13
12.5
15
12

14.5
13.0
13.2
10.0
11.2
18
16
16.5
12.5
13.0
10.0


Settled
Turbidity
1.0
0.4
0.5
1.6
1.3
1.0
0.2

0.6
0.4
0.3
0
0
1.4
0.6
1.5
0.6
1.0
0.6


Alum addition increased the size and rate of floc growth and

made the electrophoretic mobility less negative. A signifi-

cant linear relationship between mobility and the color or

turbidity reduction has been found for most of the waters

as will be discussed later.









In the study of waters from cities throughout the

country, it was found that many of the waters contained a

considerable amount of magnesium. For these waters, lime

addition precipitated the magnesium present, requiring no

additional magnesium carbonate. In Tables 10 through 25,

selected data from these studies are presented. In every

case magnesium carbonate gives color and turbidity reduc-

tions comparable to alum treatment. The floc formation

with magnesium carbonate occurs at a faster rate, the floc

formed is larger in size, and settling is more rapid due

to the greater floc density. For the waters of high alka-

linity and hardness, activated silica was found to be the

most effective flocculant aid.

Magnesium present in the natural waters was in most

cases in the noncarbonate form. Removal of magnesium as

Mg(OH)2 by lime addition will not decrease the total hard-

ness of the stabilized water, merely substitutes calcium

hardness for magnesium hardness. This can be advantageous

in the case of high magnesium waters where the formation of

magnesium silicate scales in hot water heaters is a prob-

lem.

The raw water analyses, together with the chemical

characteristics of the waters following both alum and mag-

nesium carbonate treatment are given for the waters studied

in Table 26. For the 17 waters studied, treatment with

magnesium carbonate gave a stabilized water with alkalini-

ties ranging from 29 to 55 mg/l as compared with those









TABLE 10


COAGULATION OF ATLANTA, GEORGIA WATER WITH MgCO3 AND ALUM

0 0
Dosage in ppm W 4 Alkalinity 4 Alkalinity Hardness 3

Jar 100 a o 0 o o
No. aU U O pH U vi PH C NC T

1 20 91 .5 11.15 24 23.0-.45 64 60 0

2 30 97 .5 11.15 20 14.0-.34 76 64 0

3 40 103 .5 11.15 15 4.6 0 68 76 0 9.0 11 0 45 45 0 45 16

4 40 118 .5 11.25 2 1. C.41 92 60 0 9.0 0 38 38 0 38 10

5 10 7.50 9 6.C 0 0 10

6 13 7.4 8 3. 0 0 8 9.0 0 16 16 2 18


Characteristics of raw water
Alkalinity as CaCO3 11
Total Hardness as CaCO3 13
pH. ... ... 7.65
Organic Color .... 38
Turbidity ...... 104
Type Clay ...... Natural
Magnesium as CaCO3 4


Comments


Raw water mobility -1.24









TABLE 11


MgCO3 AND ALUM COAGULATION OF BALTIMORE, MARYLAND WATER

Dosage in ppm Alkalinity 0 Alkalinity Hardness C Y
J _s rg*i i 0p __*_
SCfO CG -H -H =f r-l <1) (a
Jar Wo ( -1 e r-i c m n) C. o 0 Cr u
3 co= a0 o o 0 o o o oo
No. uo r-i pH u U U a a u C NC T

1 -- 95 2 11.15 2.1 -.57 74 48 0 9.0 0 54 54 32 86 10

2 15 105 1.5 11.15 3.5 -.47 70 60 0

3 20 105 .5 11.15 2.5 -.33 64 56 0

4 25 107 .5 11.15 2.1 0 56 60 0 9.0 0 40 40 29 69 16

5 8 6.00 1.3 0 0 10 9.0 24 24 30 54

6 10 6.00 0.6


Characteristics of raw water
Alkalinity as CaCO3 12
Total Hardness as CaCO3 40
pH. 6.00
Organic Color .... 4
Turbidity ...... 2
Type Clay ....... Natural
Magnesium as CaCO3 13


Comments








TABLE 12

LIME AND ALUM COAGULATION OF BIRMINGHAM, ALABAMA WATER


Dosage in ppm 4 4 Alkalinity W Alkalinity Hardness j
*4 10 r-4 0 WC)
0 H4 .fl, .-4 (0
Jar ca r-i o ( m P 0 n o C U u
0o r o M o 0 o o 0 0 0 C0
No. pH 0 a C NC T (W

1 90 .5 10.70 8 15 -.55 45 70 0

2 130 .5 11.15 7 4.5 -.58 72 48 0 9.0 3 2 37 39 5 44 14

3 140 11.18 8 5.5 -.58 80 48 0


4 150 .5 11.25 8 4.6 0 81 62 0 9.0 3 0 52 52 9 61 18

5 15 7.50 8 1.0 0 0 62

6 20 7.45 6 0 0 0 60 8.8 7 8 63 71 16 87 25


Characteristics of raw water
Alkalinity as CaCO3 74
Total Hardness as CaCO3 83
pH .. .7.60
Organic Color .... 12
Turbidity ...... 10
Type Clay ...... Natural
Magnesium as CaCO3 25


Comments


Raw water mobility -.77







TABLE 13

MgCO3, LIME, AND ALUM COAGULATION OF CHATTANOOGA, TENNESSEE WATER

o
Dosage in ppm Alkalinity 4 Alkalinity Hardness | o
SC 0 H '- Q c
Jar a a Mn co CL 0 C r. oU
S0 o 0 0 4J U 0 0o
No. Go o pH U o z 8 C NC T c
CO) ___ liii _I
1 120 .5 11.15 19 15 -.81 86 56 0 9.0 6 0 42 42 20 62 11

2 15 116 .5 11.10 15 10 -.42 64 60 0 9.0 6 0 38 38 18 56 13

3 20 125 .5 11.15 15 10 0 86 68 0

4 25 128 .5 11.15 11 7 1.38 82 72 0 9.0 4 0 44 44 22 66 16

5 15 7.30 11 3.0 0 0 40

6 20 7.25 8 1.8 0 0 3R 9.0 7.0 0 51 51 31 82 15


Characteristics of raw water
Alkalinity as CaCO3 48
Total Hardness as CaCO3 71
pH. .. .. 7.85
Organic Color .. 24
Turbidity ...... 15
Type Clay .. Natural
Magnesium as CaCO3 15


Comments


Mobility of raw water -1.07








TABLE 14


COAGULATION OF CLEVELAND, OHIO WATER


Characteristics of raw water
Alkalinity as CaCO3 92'
Total Hardness as CaCO3 127
pH. .......... 8.10
Organic Color .. 5
Turbidity ...... 6
Type Clay ...... Natural
Magnesium as CaCO3 34


WITH LIME AND ALUM


Comments


Dosage in ppm 4 Alkalinity 0 Alkalinity Hardness

S0 0 0 4o o o
No. 0 .o pH U = 0 U V o U C NC T


1 90 2.0 10.35 2 4.8 -1.0 14 44 0 9.0 1 0 39 39 31 70 27

2 90 4.0 10.35 2 3.3 -1.0; 14 50 0 9.0 1 0 47 47 32 79 27

3 160 11.2 2 6.0 0 76 28 0 9.0 0 38 38 32 70 13

4 180 .5 11.35 2 2.7 +.57 88 28 0 9.0 0 36 36 32 70 9

5 8 7.9C 2 4.0 0 0 88

6 10 7.80 2 2.6 0 0 86 9.0 0 98 98 38 136







TABLE 15

COAGULATION OF DETROIT, MICHIGAN WATER BY
PRECIPITATION OF MAGNESIUM PRESENT BY LIME ADDITION


Characteristics of raw water


Alkalinity as CaCO3
Total Hardness as CaCO3
pH .


Comments


80
100
7.90


Organic Color 0


Turbidity .
Type Clay .
Magnesium as CaCO3


2.5
Natural
30


Dosage in ppm 4 Alkalinity a Alkalinity Hardness on
Dosage -- in pp r -i -- -- Alaint o ----------- 0
IIrl 3 r r 0
Jar a ,-i r e cn n o ( r u
0o 1c4 0 0 0 n U 0 0
No. v 4 pH 8 o o C NC T |c

1 75 4.0 10.70 3.5 14 38 0


2 40 1.0 10.50 5.5 2 56 0 9.0 0 42 42 31 73

3 120 3.0 11.10 9.0 -.34 50 28 0

4 120 11.10 6.0 -.53 9.0 0 37 37 20 57 20

5 150 .5 11.20 5.0 -.46 74- 24 0 9.0 0 35 35 17 52 9

6 15 7.60 2.0 0 0 74. 9.0 0 86 86 26 112 30









TABLE 16


COAGULATION OF HUNTSVILLE, ALABAMA WATER WITH MgCO3 AND WITH ALUM

Dosage in ppr Alkalinity a Alkalinity Hardness | c
r4 (r y t4 -H 0 r-i 0u n) T
Jar too .0 0 1 f c. ( o en m U U U
S0 o o o o 0 4 o 0 o H"
No. uo pH u z U u U C NC T m Le

1 0 0 7 7.5 5.0 3.0 -.48 0 0 50 9.0 6 52 58 33 91 20 71

2 15 120 .5 11.15 3.0 3.8 -.37 88 48 0

3 20 125 .5 11.15 1.0 2.5 0 92 60 0 9.0 2 28 30 24 54 14 40


*4 20 125 .5 11.15 3.0 6.4 -.56 86 64 0

5 20 110 .5 10.95 1.0 0.0 -.48 54 44 0 31

6 30 115 .5 11.05 1.0 0.0 0 62 44 0 24
I -


Characteristics of raw water
Alkalinity as CaCO3 54
Total Hardness as CaCO3 84
pH. ........ .7.5
Organic Color .... 4
Turbidity ...... 13
Type Clay Natural


Comments


*Hal95 at .5 mg/1








TABLE 17


MgCO3 AND ALUM COAGULATION OF JACKSON, MISSISSIPPI WATER

Dosage in pp-m 4 Alkalinity 1 Alkalinity Hardness m
0, H rl o -u
Jar 0O M- a o c- 0 Cl C r
J o o 0 o 0' 0 0
No. Uo pH u : 0 u C NC T w~

1 20 90 .5 11.10 30 9.3 -.84 74 52 0

2 30 95 .5 11.10 27 7.7 -.69 66 64 0

3 40 113 .5 11.20 18 1.6 -.51 78 68 0

4 50 119 .5 11.15 5 2.4 -.24 74 56 0 9.0 5 2 38 39 0 39 11

5 20 6.80 12 0 0 0 9

6 5 6.607 0 0 0 8 9.0 8 0 16 16 7 23
6.60 -- __I


Characteristics of raw water
Alkalinity as CaCO3 10
Total Hardness as CaCO3 12
pH. 7.55
Organic Color ... 27
Turbidity ...... 7.4
Type Clay Natural
Magnesium as CaCO3 2


Comments








TABLE 18

MgCO3 AND ALUM COAGULATION OF LANETT, ALABAMA WATER


Characteristics of raw water
Alkalinity as CaCO3 17
Total Hardness as CaCO3 17
pH. ......... 7.55
Organic Color 30


Turbidity .
Type Clay .


Comments


105
Natural


Dosage in ppm 4 4 Alkalinity Alkalinity Hardness i o
S1 l 0 -U
H H l (d )
Jar CY o -i CO c 0 o U
So 0 0 0 o 0 4j 0 0 w
No. O r- pH U z ( U U c N o C NC T w

1 30 105 .5 11.15 30 5.0 -.32

2 35 108 .5 11.15 13 3.0 +.37

3 40 110 .5 11.15 11 2.0 +.47 94 60 0 14

4 35 125 .5 11.25 13 2.4 +.34 87 54 0 9.0 4 0 53 53 8 61 13


5 10 7.10 13 3.6 0 0 7 9.0 5.0 2 16 18 5 23

6 5 7.0C 11 3.6 0 0 5 9.0 5.0 2 12 14 9 25









TABLE 19


LIME AND ALUM COAGULATION OF LOUISVILLE, KENTUCKY WATER

Dosage in ppr v Alkalinity S Alkalinity Hardness ; n
S-- 0 u
0 o *H *-1 .f l a- En
Jar = I ao o a d o C1 0 C u
;a Io o o o 0 0 U 0 O
No. o o H L : -F U U 0 0 C NC T C ~

1 60 2.0 10.75 3 14.5 34 60 0

2 120 2.0 11.20 3 8.0 92 60 0

3 100 .5 10.90 10 7.81.38 42 60 0 9.0 5 0 32 32 61 83 17


4 140 .5 11.25 4 4.5~.73 80 56 0 9.0 4 0 28 28 55 81 12

5 10 7.35 6 1i. 0 0 50 9.0 5 0 59 59 62 121

6 15 7.30 4 1.4 0 0 48
1.


Characteristics of raw water
Alkalinity as CaC03 51
Total Hardness as CaCO3 110
pH. .. .. 7.50
Organic Color .... 11
Turbidity ...... 106
Type Clay ...... Natural
Magnesium as CaCO3 33


Comments


Mobility of raw water -.98








TABLE 20


MgCO3, LIME, AND ALUM COAGULATION OF NASHVILLE, TENNESSEE WATER

Dosage in ppm Alkalinity 2 Alkalinity Hardness C N
S'0 r 0 *- H U(
Jar to o .-i o 1 a a 0 o C o co r U
No ooo o 0 0 0 0 0 o o 0 0
No. pH 0 0 8 U 0 o C NC T CU w s
1 110 .5 10.95 8 5.4 .63 43 54 0 9.0 8 2 40 42 16 58 15 .0.3

2 150 11.20 7 2.8 -.60 98 58 0 9.0 4 0 38 38 20 58 12

3 10 116 11.00 8 6.0 -.67 48 44 0

4 15 120 .5 11.00 8 4.6 -.57 56 44 0 9.0 6 4 33 37 15 52 19 0

5 LO 7.55 8 2.6 0 0 66

6 .2 7.50 7 1.6 0 0 65 9.0 8 12 61 73 24 97
|7


Characteristics of raw water
Alkalinity as CaC03 71
Total Haraness as CaCO3 86
pH. .. 7.60
Organic Color .... 8
Turbidity ...... 7.5
Type Clay ...... Natural
Magnesium as CaCO3 17


Comments








TABLE 21

MgC03 AND ALUM COAGULATION OF OPELIKA, ALABAMA WATER

Dosage in ppm 1 j Alkalinity w Alkalinity Hardness o
*H 0
C- -i -- 0 U) U
Jar c o o o o o o w M o o0 M
No. z pH 0 04 C NC T U 0
pH C NC T ar

1 5 90 .5 10.95 7 13 -.81

2 10 92 .5 11.10 1 16 -.68 66 32 0 10

3 20 106 0 11.10 2 12.5-.49

4 25 109 .5 11.15 3 3.4 .43 72 32 0 9.0

5 7 6.90 7 1.C

6 O 6.80 4 0 0 0 14 9.0 3 18 21 9 30


Characteristics of raw water
Alkalinity as CaCO3 17
Total Hardness as CaCO3 17
pH. ......... 6.95
Organic Color 10


Turbidity .
Type Clay .


Comments


14
Natural








TABLE 22

LIME, MgCO3, AND ALUM COAGULATION OF PHILADELPHIA, PENNSYLVANIA WATER


Dosage in ppnm r Alkalinity o Alkalinity Hardness >
0 r O ) U
Jar o .0 .0 n n i o o C 0
o 0 U 0 0o o 0 0 U o 00
No. UO r- pH U tn u C NC T M

1 120 .5 11.15 10 2.6 0 86 76 0 9.0 7 0 34 34 34 68 10

2 135 .5 11.25 10 1.4 0 106 68 0 9.0 5 0 35 35 31 66 7

3 10 133 .5 11.13 6 2.6 +.36 94 80 0 9.0 5 0 34 34 32 66 13

*4 60 10.75 6 0.4 36 62 0 9.0 0 48 48 39 87 18

5 L5 7.10 9 1.8 0 0 30

6 20 7.05 7 1.0 0 0 28 9.0 5 0 56 56 39 95 24


Characteristics of raw water
Alkalinity as CaCO3 34
Total Haraness as CaC03 69
pH. ......... 7.40
Organic Color .... 14
Turbidity ...... 41
Type Clay ...... Natural
Magnesium as CaCO3 24


Comments


*2.0 mg/1 "Si02









TABLE 23


COAGULATION OF RICHMOND, VIRGINIA WATER WITH MgCO3 AND ALUM

Dosage in ppm 4 4 Alkalinity w Alkalinity Hardness
--- -- ---t4 T -< --- -- ---- 0 ---- 1 -------- --- I -- 1)0
0 H 4 fl .lH 0-
Jar m 0 o 0 o o o n o U
Jar Cl) fl Mf c, W C1. 0
WO &0 n= 0 ,- 0 0 0 0 4- U 0 0 bO
No. Uo U pH o a U 0 0 C NC T Ca M

1 20 110 .5 11.25 23 14.0 0 78 52 0

2 25 112 .5 11.25 16 5.81.34 80 54 0

3 30 125 .5 11.30 12 2.6 .43 98 50 0 9.0 5 0 40 40 15 55 15

4 40 120 .5 11.25 9 2.8.62 86 56 0 9.0 5 0 38 38 15 53 17

5 3 20 7.80 19 6 0 0 24 9.0 12 0 29 29 24 53

6 3 3 7.70 12 2. 0 0 22 9.0 8 0 31 31 24 55


Characteristics of raw water


Alkalinity as CaCO3


Comments


27


Total Hardness as CaCO3 43
pH. ... .7.90
Organic Color 30


Turbidity .
Type Clay .


24
Natural


Magnesium as CaC03 7









MgCO3 AND


TABLE 24

ALUM COAGULATION OF TUSCALOOSA, ALABAMA WATER


Characteristics of raw water
Alkalinity as CaCO3 4.0
Total Hardness as CaCO3 5.0
pH. .. .. 6.3
Organic Color .... 26
Turbidity ...... 4
Type Clay ...... Natural


Dosage in ppm 1 j Alkalinity 0 Alkalinity Hardness o
*d *l .' i rj 0
o a0 r- 0 -- o
n aH 0 fi U- w0
Jar Mo -s -i i c o n
,,0 u nO 0 0 0 0 4- 0 0
No. uo pH 0u o i U E C NC T M
o I pH C NC T-

1 15 83 .5 11.05 19 2.6 -.87

2 20 86 .5 11.10 16 2.0 -.7.6

3 20 97 .5 11.20 12 0.6 -.37

4 25 100 .5 11.25 8 0.5 -.39 95 32 0 9.0 2 38 40 2 42 12

5 -- 1 7 6.70 7 .1 -.43 0 0 3 9.0 3 6 9 6 15

6 -- 2 7.00 9 .1 0


Comments







TABLE 25

MgCO3, LIME, AND ALUM COAGULATION OF WASHINGTON, D.C. WATER

0 S
Dosage in ppm 4 4 Alkalinity Alkalinity Hardness H o

U 0 0 0 4J o 0 a0 0
Jar Mo | ^ 3 m o^ 0 5 5 _
No. pH o a u o u C NC T m

*1 120 11.10 12 3.0 0 76 48 0

*2 10 127 11.10 8 2.2 -.49 78 48 0

3 15 130 .5 11.10 7 2.0 -.41 72 54 0

4 20 117 .5 10.95 11 2.6 -.72 56 64 0 9.0 5 4 44 48 27 75 18

5 L5 7.45 10 3.0 0 0 37

6 20 7.40 6 1.5 0 0 33 8.4 7 0 40 40 36 76 17


Characteristics of raw water
Alkalinity as CaC03 41
Total Hardness as CaCO3 71
pH. ......... 7.50
Organic Color 15


Turbidity .
Type Clay .
Magnesium as CaCO3


Comments


Mobility of raw water -.96

*.5 mg/l Hal96


50
Natural
17


















TABLE 26

COMPARISON OF RAW AND TREATED CHEMICAL CHARACTERISTICS FOR 17 NATURAL WATERS



RAW WATER CHARACTERISTICS MgCO3 TREATMENT ALUM TREATMENT
CITY _
Total Total Magnes- Total Total Total Total
Turbidity Color ikalindL ardness ium as Alkalinity Hardness Alkalinity Hardness
CaCO-
Atlanta, Ga. 104 38 11 13 -4 38 38 16 1
Baltimore, Md. 2 4 12 40 13 29 53 24 54
Birmingham, Ala. 10 12 74 83 25 40 47 71 87
(a) 15 24 48 71 15 38 56 51 82
Cleveland, Ohio 6 5 92 127 34 36 68 98 136
Detroit, Mich. 3 0 80 100 30 37 57 86 112
Huntsville, Ala(b) 13 4 54 84 13 30 54 52 91
Jackson, Miss. 8 27 10 12 2 39 39 16 23
Lanett, Ala. (c) 105 30 17 17 6 55 55 18 23
Louisville, Ky. 106 11 51 110 33 32 83 59 121
Montgomery, Ala. 165 50 13 16 3 44 44 13 22
Nashville, Tenn. 8 8 71 86 16 32 50 73 97
Opelika, Ala. 14 10 17 17 4 33 33 21 30
Philadelphia, Pa. 41 14 34 69 24 34 66 56 95
Richmond, Va. 24 30 27 43 7 38 53 29 55
Tuscaloosa, Ala. 4 26 4 5 1 40 42 9 15
Washington. D. C. 50 15 41 71 17 40 68 40 76

(a) Requested to be deleted from publication
(b) Tennessee River used for source of raw water
(c) Chattahoochee River used for source of raw water







84
resulting from alum treatment, which ranged from 9 to 98

mg/1. Values for stabilized hardness ranged from 33 to 83

mg/1 as compared with 15 to 136 mg/1 for alum treatment.

Six of the waters coagulated with alum are too low in hard-

ness and alkalinity to use pH adjustment effectively for

corrosion control. In addition, eight waters would benefit

by the reduction in total hardness resulting from using

magnesium carbonate rather than alum.


Solubility of Magnesium Hydroxide

The solubility of magnesium hydroxide has been deter-

mined by many investigators. In this study is was increas-

ingly evident that the magnesium remaining in solution after

coagulation was many times more than would be predicted by

theory. There are several reasons for this apparent in-

crease in solubility, as discussed previously. In the jar

tests the time allowed for equilibrium was usually only one

hour. In plant use, four to six hours are normally allowed

for precipitation which should decrease the magnesium solu-

bility. It is the magnesium hydroxide which is precipitated

that causes colloidal destabilization and only this portion

of the magnesium dosage can be recovered and reused.

The solubility of magnesium hydroxide under jar test

conditions varied for each of the natural waters studied.

It would have been desirable to determine this solubility

relationship for each water, but because of a lack of suf-

ficient data, a composite of 70 observations of magnesium









concentrations at varying pH values for all of the waters

studied was used. A simple linear regression analysis

between log magnesium and pH was used to determine the

experimental Ksp. This value was found to be 1.66 x 10-10

with a standard error of the estimate equal to 1.27.

The solubility relationship found is shown in Figure

9, where the magnesium is plotted as magnesium carbonate

tri-hydrate. This composite solubility relationship is used

in determining recovery efficiencies and cost estimates for

the natural waters studied.


Determination of Conditions for Lowest Treatment Cost

Each water requires a specific amount of magnesium

hydroxide for satisfactory treatment. The solubility re-

lationship developed allows calculation of the amount of

magnesium carbonate which must be fed to precipitate this

amount at various coagulation pH values. For the economic

evaluations, three chemical costs will be considered:

1) Dosage of 90% quicklime required to provide the

optimum pH

2) Amount of CO2 required to:

a) solubilize the Mg(OH)2 in the sludge and

b) reduce the high pH of the treated water to

the pH of stabilization

3) Amount of "make-up" MgCO3.3H20 to be added.

In addition three alternative conditions are considered:

Case I. Lime recovery is practiced, providing CO2

at no cost and 90% lime at $.006/lb,


























Temp. 25 C
Experimental K,, 1.66 X 10-10
100- Theoretical K,, 2.5 X 10-"
Experimental Determination






\'* 4 I


10.20


10.60


11.00


11.40


FIG. 9 SOLUBILITY OF Mg(OH)2 (AS MgCO3 3HgO) AS

FUNCTION OF pH FOR 23 NATURAL WATERS


I-----~-~--~--p-.










Case II. Lime is purchased at $.01/lb but CO2 is

available at no cost from a source within or

near the water plant.

Case III. Lime is purchased at $.01/lb and CO2

generated at a cost of $.0l/lb,

A cost of $.05/lb was assumed for the MgCO3.3H20.

A series of curves have been developed that will

allow a graphical determination of the pH for coagulation

at the least cost. The lime required to increase the pH

from 10.5 to some desired value is independent of the total

carbonate present in the water. In Figure 10, the cost to

raise the pH from 10.5 to the desired pH is shown for the

three cases considered. Figure 10 also includes the cost

of CO2 to stabilize the water back to pH 10.5. The MgCO3.

3H20 cost curve was developed from the solubility relation-

ship curve. It was assumed that MgCO3.3H20 left in solu-

tion represented a cost, i.e. make-up coagulant. Summing

the magnesium carbonate cost and the lime and CO2 costs for

the three cases, a total cost curve is shown in Figure 11.

The optimum pH values and costs can then be determined as:

Cast I pH = 11.35

Cost = $ 9.57

Case II pH = 11.15

Cost = $10.85

Case III pH = 11.00

Cost = $12,45














































20 40 60 80 100 120 140 160 180 200
ALKALINITY (Mg/I as CaCO,)


FIG. 10 TREATMENT COST IN $/M.G. FOR CoO AND CO2 TO
RAISE THE RAW WATER pH TO 10.5 AND REDUCE
THE pH BACK TO pH 9.0 FOR STABILIZATION


12.00-


10.00-



0oo-



S 6.00-
o




Full Text

PAGE 1

0DJQHVLXP &DUERQDWH $ 5HF\FOHG &RDJXODQW IRU :DWHU 7UHDWPHQW %\ &/,)) *5((1 7+203621 $ ',66(57$7,21 35(6(17(' 72 7+( *5$'8$7( &281&,/ 2) 7+( 81,9(56,7< 2) )/25,'$ ,1 3$57,$/ )8/),//0(17 2) 7+( 5(48,5(0(176 )25 n+,( '(*5(( 2) '2&725 2) 3+,/2623+< 81,9(56,7< 2) )/25,'$

PAGE 2

$&.12:/('*0(176 7KH DXWKRU ZLVKHV WR H[SUHVV KLV DSSUHFLDWLRQ WR KLV FRPPLWWHH FKDLUPDQ 'U -( 6LQJOH\ IRU KLV DVVLVWDQFH DQG JXLGDQFH WKURXJKRXW WKH FRXUVH RI WKLV JUDGXDWH UHVHDUFK ZRUN 7KH DXWKRU LV PRVW GHHSO\ JUDWHIXO IRU WKH OHDUQLQJ H[SHULHQFH GHULYHG IURP WKH DVVRFLDWLRQ ZLWK 'U $ 3 %ODFN +LV LQVSLUDWLRQDO HQWKXVLDVP DQG WLUHOHVV DVVLVWDQFH WR D ODUJH GHJUHH PDGH WKLV GLVVHUWDWLRQ SRVVLEOH $SSUHFLDWLRQ LV H[WHQGHG WR 'U 3 / %UH]RQLN DQG 'U 0 6FKPLG IRU JLYLQJ IUHHO\ RI WKHLU WLPH DQG DVVLVWDQFH *UDWLWXGH LV H[WHQGHG WR 0UV -HDQQH 'RUVH\ IRU KHU W\SLQJ RI WKLV GLVVHUWDWLRQ 7R P\ IHOORZ VWXGHQWV 0U 5RJHU
PAGE 3

&217(176 3DJH $&.12:/('*0(176 LL /,67 2) 7$%/(6 Y /,67 2) ),*85(6 YLLL $%675$&7 [ &+$37(5 ,1752'8&7,21 7+(25(7,&$/ &216,'(5$7,216 0DJQHVLXP &KHPLVWU\ &ROORLGDO 'HVWDELOL]DWLRQ &KHPLFDO DQG 3K\VLFDO 3URSHUWLHV RI 2UJDQLF &RORU &KHPLFDO DQG 3K\VLFDO 6WUXFWXUH RI 0RQWPRULOORQLWH DQG (PDWKOLWH &OD\V &KHPLVWU\ RI ,URQ &RUURVLRQ DQG &RQWURO E\ &DOFLXP &DUERQDWH 'HSRVLWLRQ (;3(5,0(17$/ 0$7(5,$/6 $1' 0(7+2'6 0HWKRGV 0DWHULDOV 3UHSDUDWLRQ RI 0DWHULDOV $QDO\WLFDO 7HFKQLTXHV -DU 7HVW 3URFHGXUHV 5HFRYHU\ 6WXGLHV &RDJXODWLRQ 8VLQJ 5HFRYHUHG 0DJQHVLXP %LFDUERQDWH n 5(68/76 $1' ',6&866,21 &RDJXODQW 6WXGLHV RI 6\QWKHWLF :DWHUV 6WXG\ RI 1DWXUDO :DWHUV 6ROXELOLW\ RI 0DJQHVLXP +\GUR[LGH 'HWHUPLQDWLRQ RI &RQGLWLRQV IRU /RZHVW 7UHDWPHQW &RVW LLL

PAGE 4

&+$37(5 3DJH (OHFWURSKRUHWLF 0RELOLW\ DV D 0HDVXUH RI 7UHDWPHQW (IILFLHQF\ 3UHGLFWLRQ RI WKH 5HTXLUHG &RDJXODQW 'RVH &RDJXODQW 5HFRYHU\ &RDJXODWLRQ ZLWK 5HFRYHUHG 0DJQHVLXP &RPSDULVRQ RI 9DOXHV IRU 5HVLGXDO 0DJQHVLXP 'HWHUPLQHG E\ ('7$ :LWK 7KRVH 'HWHUPLQHG E\ $WRPLF $EVRUSWLRQ $SSOLFDWLRQ RI WKH 3URFHVV 3KRWRJUDSKLF &RPSDULVRQ RI WKH )RUPDWLRQ RI )ORHV 3URGXFHG :LWK 0DJQHVLXP &DUERQDWH DQG ZLWK $OXP 6800$5< $1' &21&/86,216 5(&200(1'$7,21 )25 )857+(5 678'< $33(1',; 5()(5(1&(6 %,2*5$3+,&$/ 6.(7&+ ,9

PAGE 5

/,67 2) 7$%/(6 7DEOH 3DJH &KHPLFDO $QDO\VLV RI 2UJDQLF &RORU 0DJQHVLXP &DUERQDWH 5HTXLUHG IRU &RDJXODWLRQ RI 2UJDQLF &RORU DQG (PDWKOLWH 7XUELGLW\ /LPH DQG 0J&2R &RDJXODWLRQ RI D )XOOHUnV (DUWK 7XUELGLW\ 6\QWKHWLF :DWHU 0J&2R &RDJXODWLRQ RI D +LJKO\ &RORUHG )XOOHUnV (DUWK 7XUELGLW\ 6\QWKHWLF :DWHU 0DJQHVLXP &DUERQDWH 'RVDJH 5HTXLUHG WR &RDJXODWH 2UJDQLF &RORU DQG 0RQWPRULOORQLWH 7XUELGLW\ &RDJXODWLRQ RI D +LJKO\ &RORUHG 6\QWKHWLF :DWHU ZLWK 0J&2R 0J&2A DQG $OXP &RDJXODWLRQ RI 0RQWJRPHU\ $ODEDPD :DWHU n f 0J&2A DQG $OXP &RDJXODWLRQ RI 0RELOH 5LYHU :DWHU 0RELOH $ODEDPD (IIHFW RI $OXP DV D )ORFFXODQW $LG LQ &RORU DQG 7XUELGLW\ &RDJXODWLRQ ZLWK 0DJQHVLXP &DUERQDWH &RDJXODWLRQ RI $WODQWD *HRUJLD ZDWHU ZLWK 0J&2A DQG $OXP 0J&2R DQG $OXP &RDJXODWLRQ RI %DOWLPRUH 0DU\ODQG :DWHU f f /LPH DQG $OXP &RDJXODWLRQ RI %LUPLQJKDP $ODEDPD :DWHU 0J&2A /LPH DQG $OXP &RDJXODWLRQ RI &KDWWDQRRJD 7HQQHVVHH :DWHU &RDJXODWLRQ RI &OHYHODQG 2KLR :DWHU ZLWK /LPH DQG $OXP Y

PAGE 6

7DEOH 3DJH &RDJXODWLRQ RI 'HWURLW 0LFKLJDQ :DWHU E\ 3UHFLSLWDWLRQ RI 0DJQHVLXP 3UHVHQW E\ /LPH $GGLWLRQ &RDJXODWLRQ RI +XQWVYLOOH $ODEDPD :DWHU :LWK 0J&2A DQG ZLWK $OXP 0J&2A DQG $OXP &RDJXODWLRQ RI -DFNVRQ 0LVVLVVLSSL :DWHU 0J&2J DQG $OXP &RDJXODWLRQ RI /DQHWW $ODEDPD :DWHU /LPH DQG $OXP &RDJXODWLRQ RI /RXLVYLOOH .HQWXFN\ :DWHU n 0J&2AI /LPH DQG $OXP &RDJXODWLRQ RI 1DVKYLOOH 7HQQHVVHH :DWHU 0J&2J DQG $OXP &RDJXODWLRQ RI 2SHOLND $ODEDPD :DWHU /LPH 0J&2ADQG $OXP &RDJXODWLRQ RI 3KLODGHOSKLD 3HQQV\OYDQLD :DWHU &RDJXODWLRQ RI 5LFKPRQG 9LUJLQLD :DWHU :LWK 0J &2 A DQG $OXP 0J&2A DQG $OXP &RDJXODWLRQ RI 7XVFDORRVD $ODE£PD :DWHU 0J&2A /LPH DQG $OXP &RDJXODWLRQ RI :DVKLQJWRQ '& :DWHU &RPSDULVRQ RI 5DZ DQG 7UHDWHG &KHPLFDO &KDUDFWHULVWLFV IRU 1DWXUDO :DWHUV (FRQRPLF &RPSDULVRQ RI 7UHDWPHQW 0HWKRGV IRU 1DWXUDO :DWHUV 5HODWLRQVKLS %HWZHHQ (OHFWURSKRUHWLF 0RELOLWLHV DQG 6HWWOHG &RORU RU 7XUELGLW\ IRU 1DWXUDO :DWHUV 5HTXLUHG 0DJQHVLXP 'RVH DV 5HODWHG WR 3K\VLFDO DQG &KHPLFDO &KDUDFWHULVWLFV IRU 1DWXUDO :DWHUV YL

PAGE 7

3DJH 7DEOH &DUERQDWLRQ RI 6OXGJH 3URGXFHG IURP WKH &RDJXODWLRQ RI /LWHUV RI 6\QWKHWLF :DWHU &RQWDLQLQJ PJ RI 2UJDQLF &RORU DQG PJ 7XUELGLW\ &DUERQDWLRQ RI 6OXGJH 3URGXFHG IURP WKH &RDJXODWLRQ RI /LWHUV RI 6\QWKHWLF :DWHU &RQWDLQLQJ PJ 2UJDQLF &RORU DQG PJ 7XUELGLW\ &DUERQDWLRQ RI 6OXGJH 3URGXFHG IURP WKH &RDJXODWLRQ RI /LWHUV RI 6\QWKHWLF :DWHU &RQWDLQLQJ PJ 2UJDQLF &RORU DQG PJ 7XUELGLW\ &DUERQDWLRQ RI 6OXGJH 3URGXFHG IURP WKH &RDJXODWLRQ RI /LWHUV RI 6\QWKHWLF :DWHU &RQWDLQLQJ PJ 2UJDQLF &RORU DQG PJ 7XUELGLW\ &DUERQDWLRQ RI 6OXGJH 3URGXFHG IURP WKH &RDJXODWLRQ RI /LWHUV RI 1DWXUDO 17DWHU &RQWDLQLQJ PJ RI 2UJDQLF &RORU DQG PJ $GGHG 0RQWPRULOORQLWH &OD\A 7XUELGLW\ &RDJXODQW 5HFRYHU\ 6WXGLHV 0DJQHVLXP 6ROXELOLW\ DV D )XQFWLRQ RI S+ IRU &RDJXODQW 5HFRYHU\ 6WXGLHV (YDOXDWLRQ RI 7ZLFH 5HF\FOHG 0DJQHVLXP LQ &RDJXODWLRQ RI 6\QWKHWLF :DWHU &RPSDULVRQ RI $WRPLF $EVRUSWLRQ DQG ('7$ DV 0HWKRGV IRU 0DJQHVLXP $QDO\VLV &DOFXODWHG 3RWHQWLDO 3URGXFWLRQ RI 0J&2A A E\ $PHULFDQ &LWLHV r &DOFXODWLRQV IRU SRWHQWLDO &RQVXPSWLRQ RI 0J&2Rn2OA2 E\ :DWHU 7UHDWPHQW 3ODQWV LQ WQH 8QLWHG 6WDWHV YLL

PAGE 8

/,67 2) ),*85(6 )LJXUH 3DJH (IIHFW RI +LJK S+ RQ 3ROLRYLUXV /6Ff LQ )ORFFXODWHG PJ &DW2+Af} 6DQG )LOWHUHG 6HFRQGDU\ (IIOXHQWV DW r& 6ROXELOLW\ 'LDJUDP IRU 0DJQHVLXP LQ :DWHU DW $WPRVSKHULF &RQGLWLRQV 7HPSHUDWXUH ,QIOXHQFH RQ 0DJQHVLXP 6ROXELOLW\ (IIHFW RI S+ RQ 0RELOLW\ IRU WKH ,QGLFDWHG &RDJXODQW 'RVDJHV 6ROXELOLW\ RI 0J&2A;+A2 DV D )XQFWLRQ RI 7LPH IRU WKH ,QGLFDWHG +\GUDWH )RUPV 0XOWLSOH 6WLUUHU IRU -DU 7HVWV )ODVK (YDSRUDWRU 8VHG WR &RQFHQWUDWH 2UJDQLF &RORU =HWD0HWHU 8VHG WR 'HWHUPLQH 3DUWLFOH 0RELOLW\ 6ROXELOLW\ RI 0J&2+f $V 0J&2R6OA2f DV D )XQFWLRQ RI S+ IRU R 1DWXUDO ZDWHUV 7UHDWPHQW &RVW LQ 0* IRU &D2 DQG &2R WR 5DLVH WKH 5DZ :DWHU S+ WR DQG 5HGXFH WKH S+ %DFN WR S+ IRU 6WDELOL]DWLRQ 3DUWLDO 7UHDWPHQW &RVWV LQ 0* IRU &D2 &2 DQG 0J&2A DV D )XQFWLRQ RI &RDJXODWLRQ S+ 7UHDWPHQW &RVW LQ 0* DV D )XQFWLRQ RI WKH 5DZ :DWHU 7RWDO $ONDOLQLW\ 7UHDWPHQW &RVW LQ 0* DV D )XQFWLRQ RI &RDJXODWLRQ S+ 7UHDWPHQW &RVW LQ 0* DV D )XQFWLRQ RI WKH $PRXQW RI 0J&2J 3UHFLSLWDWHG 9OOO

PAGE 9

)LJXUH 3DJH 6HWWOHG &RORU DV D )XQFWLRQ RI 3DUWLFOH 0RELOLW\ 'XULQJ &RDJXODWLRQ -DFNVRQ 0LVVLVVLSSL :DWHU 6HWWOHG 7XUELGLW\ DV D )XQFWLRQ RI &RDJXODWLRQ 0RELOLW\ /DQHWW :DWHU 0DJQHVLXP 5HFRYHU\ E\ &DUERQDWLRQ ,OO &RPSDULVRQ RI $WRPLF $EVRUSWLRQ DQG ('7$ DV $QDO\WLFDO 0HWKRGV RI 'HWHUPLQLQJ 0DJQHVLXP LQ 1DWXUDO :DWHUV )ORZ 'LDJUDP IRU 7XUELGLW\ 5HPRYDO 3ODQW 8VLQJ 0J&2A DQG /LPH 5HFDOFLQLQJ 3KRWRJUDSKLF &RPSDULVRQ RI 0J&2R DQG $OXP )ORH 'XULQJ 5DSLG 0L[LQJ LQ WKH-5HPRYDO RI 2UJDQLF &RORU 3KRWRJUDSKLF &RPSDULVRQ RI 0J&2R DQG $OXP )ORH 'XULQJ )ORFFXODWLRQ LQ WKH-5HPRYDO RI 2UJDQLF &RORU 3KRWRJUDSKLF &RPSDULVRQ RI WKH 5DWH RI 6HWWOLQJ IRU 0J&2J DQG $OXP )ORHV )RUPHG LQ WKH 5HPRYDO RI 2UJDQLF &RORU 3KRWR0LFURJUDSKV RI $OXP DQG 0J& )ORH )RUPHG LQ WKH 5HPRYDO RI 2UJDQLF &RORU 0DJQLILHG 7LPHV 3KRWR0LFURJUDSKV RI $OXP DQG 0J&2A )ORH )RUPHG LQ WKH 5HPRYDO RI 2UJDQLF &RORU 0DJQLILHG 7LPHV 0DJQHVLXP &DUERQDWH )ORH 0DJQLILHG 7LPHV ZLWK &DOFLXP &DUERQDWH &U\VWDOV 3UHVHQW L[

PAGE 10

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 0$*1(6,80 &$5%21$7( $ 5(&<&/(' &2$*8/$17 )25 :$7(5 75($70(17 %\ &OLII *UHHQ 7KRPSVRQ -XQH &KDLUPDQV ( 6LQJOH\ 0DMRU 'HSDUWPHQW (QYLURQPHQWDO (QJLQHHULQJ $Q HQWLUHO\ QHZ V\VWHP IRU ZDWHU FRDJXODWLRQ KDV EHHQ GHYHORSHG ZKLFK DOORZV UHXVH RI WKH FRDJXODQW OLPH DQG FDUERQ GLR[LGH SURGXFHG LQ OLPH UHFRYHU\ 7KH XVH RI PDJQHVLXP FDUERQDWH LQ SODFH RI DOXP KDV PDQ\ DGYDQWDJHV WKH PRVW LPSRUWDQW EHLQJ WKH HOLPLQDWLRQ RI VOXGJH GLVSRVDO SUREOHPV ZKLFK WRGD\ LV WKH PRVW GLIILFXOW SUREOHP IDFLQJ WKH ZDWHU ZRUNV LQGXVWU\ 0DJQHVLXP FDUERQDWH K\GURO\]HV ZLWK OLPH WR IRUP PDJQHVLXP K\GUR[LGH ZKLFK KDV SURSHUWLHV TXLWH VLPLODU WR WKH K\GURO\VLV SURGXFWV RI DOXPLQXP 7KH PDJQHVLXP LV DOPRVW FRPSOHWHO\ SUHFLSLWDWHG DW WKH KLJK S+ UDQJH RI FRDJXODWLRQ DQG FDQ EH UHFRYHUHG IURP WKH VOXGJH E\ FDUERQDWLRQ DQG UHXVHG &DUERQDWLRQ FRQYHUWV WKH LQVROXEOH 0J+f WR WKH VROXEOH IRUPV RI PDJQHVLXP 0J&2A DQG 0J&+&2AA} ZKLFK FDQ EH VHSDUDWHG IURP WKH FDOFLXP FDUERQDWH DQG WXUELGLW\ E\ YDFXXP ILOWUDWLRQ 7KH ILOWUDWH FRQWDLQLQJ WKH PDJQHVLXP YDOXHV FDQ WKHQ EH UHF\FOHG DQG UHXVHG ZKLOH WKH ILOWHU FDNH LV UHDGLO\ GLVSRVHG RI DV ODQG ILOO HOLPLQDWLQJ VOXGJH GLVSRVDO SUREOHPV 7KH PDJQHVLXP FDUERQDWH XVHG LQ WKLV VWXG\ ZDV SURGXFHG IURP WKH ZDWHU

PAGE 11

DQG IRU WKH FRVW RI WKH OLPH FDUERQ GLR[LGH DQG PDJQHVLXP FDUERQDWH EDVHG RQ MDU WHVW UHVXOWV 7KH FRVW HVWLPDWHV DUH EDVHG RQ PDJQHVLXP VROXELOLW\ UHODWLRQVKLSV IRXQG LQ WKH FRDJXODWLRQ VWXGLHV ZKLFK DUH FRQVLGHUDEO\ KLJKHU WKDQ ZRXOG EH SUHGLFWHG E\ WKHRU\ 7KH FRQGLWLRQV RI IXOOVFDOH DSSOLn FDWLRQ ZLOO SUREDEO\ EH PRUH IDYRUDEOH IRU PRUH FRPSOHWH SUHFLSLWDWLRQ RI WKH PDJQHVLXP K\GUR[LGH GXH WR WKH ORQJHU UHDFWLRQ WLPH DQG PDVV DFWLRQ HIIHFW GXULQJ FRDJXODWLRQ 7KH FRVW DQDO\VLV HYHQ EDVHG RQ FRQVHUYDWLYH HVWLPDWHV LQGLFDWHV VLJQLILFDQW VDYLQJV LQ WUHDWPHQW FRVWV IRU PRVW ZDWHUV ZLWK QR FRQVLGHUDWLRQ JLYHQ IRU WKH PDQ\ EHQHILWV RI WKLV SURFHVV $OO RI WKH PDJQHVLXP K\GUR[LGH SUHFLSLWDWHG FDQ EH UHFRYHUHG E\ FDUERQDWLRQ ZLWK QR SUREOHPV RI FRORU UHOHDVH RU VOXGJH GHZDWHULQJ IRU PRVW ZDWHUV 7KH FKHPLFDO FKDUDFWHULVWLFV RI ZDWHUV FRDJXODWHG ZLWK PDJQHVLXP FDUERQDWH DUH LQ PRVW FDVHV VXSHULRU WR ZDWHUV FRDJXODWHG ZLWK DOXP :KHQ PDJQHVLXP FDUERQDWH LV XVHG WKH WUHDWHG ZDWHUV KDYH DONDOLQLWLHV UDQJLQJ IURP WR PJ JLYLQJ VRIW ZDWHUV VXIILFLHQW DONDOLQLW\ IRU VWDELOL]DWLRQ E\ S+ DGMXVWPHQW )RU ZDWHU KLJK LV FDUERQDWH KDUGQHVV VRIWHU ZDWHUV DUH SURGXFHG E\ WUHDWPHQW ZLWK PDJQHVLXP FDUn ERQDWH WKDQ ZLWK DOXP [LW

PAGE 12

VRIWHQLQJ VOXGJH DW 'D\WRQ 2KLR 7KH QHZ WHFKQRORJ\ RI UHFRYHULQJ PDJQHVLXP FDUERQDWH IURP WKH VOXGJHV RI ZDWHU SODQWV VRIWHQLQJ KLJK PDJQHVLXP ZDWHUV ZLOO PDNH DYDLODEOH XS WR WRQV SHU \HDU RI ORZ FRVW PDJQHVLXP FDUERQDWH 7KLV VWXG\ ZDV GLYLGHG LQWR WKUHH UHVHDUFK DUHDV WKH XVH RI 0J&2A DV D FRDJXODQW IRU ERWK V\QWKHWLF DQG QDWXUDO ZDWHUV WKH UHFRYHU\ RI PDJQHVLXP YDOXHV E\ FDUERQ DWLRQ IURP WKH VOXGJH DQG WKH UHXVH RI WKH UHFRYHUHG PDJQHn VLXP IRU FRDJXODWLRQ 7KH UHVXOWV RI WKH FRDJXODWLRQ VWXGLHV VKRZ WKDW PDJn QHVLXP FDUERQDWH K\GURO\]HG ZLWK OLPH LV DV HIIHFWLYH DV DOXP IRU WKH UHPRYDO RI ERWK WXUELGLW\ DQG RUJDQLF FRORU LQ ERWK V\QWKHWLF DQG QDWXUDO ZDWHUV $Q HTXDWLRQ ZDV GHYHORSHG IRU SUHGLFWLRQ RI WKH UHTXLUHG FRDJXODQW GRVH EDVHG RQ WKH SK\VLFDO DQG FKHPLFDO FKDUDFWHULVWLFV RI WKH UDZ ZDWHU 2UJDQLF FRORU KDG WKH JUHDWHVW HIIHFW RQ WKH FRDJXODQW UHTXLUHPHQWV ZLWK WKH W\SH RU OHYHO RI WXUELGLW\ H[KLELWLQJ RQO\ PLQLPDO HIIHFWV $ VWXG\ RI YDULRXV IORFFXODQWV UHYHDOHG WKDW IRU HDFK ZDWHU D VSHFLILF IORFFXODQW ZDV XVXn DOO\ IRXQG VXSHULRU WR DOO RWKHUV WHVWHG ,Q JHQHUDO KRZn HYHU VRIW ZDWHUV UHVSRQGHG EHVW WR SSP GRVDJHV RI DOXP ZKHUHDV HLWKHU DFWLYDWHG VLOLFD RU SRWDWR VWDUFK SURGXFHG EHWWHU IORHV LQ KDUG ZDWHUV )RU PRVW ZDWHUV PHDVXUHPHQW RI SDUWLFOH PRELOLW\ ZDV IRXQG WR EH DQ HIIHFWLYH WRRO IRU HYDOXDWLQJ WKH FRDJXODWLRQ RI WXUELGLW\ DQG RUJDQLF FRORU $ VHULHV RI FXUYHV KDV EHHQ SUHSDUHG VR WKDW D JUDSKn LFDO VROXWLRQ FDQ EH PDGH IRU WKH RSWLPXP FRDJXODWLRQ S+ [L

PAGE 13

&+$37(5 ,1752'8&7,21 ,URQ DQG SDUWLFXODUO\ DOXPLQXP VDOWV KDYH VHUYHG ZHOO LQ WKH FRDJXODWLRQ DQG FODULILFDWLRQ RI ZDWHU VLQFH WKHLU FRPPRQ XVDJH LQ WKH HDUO\ nV 0DQ\ LQYHVWLJDWRUV FRQn VLGHU WKH KLJKO\ K\GUDWHG DQG JHODWLQRXV SURSHUW\ RI WKH K\GURO\VLV SURGXFWV WR EH D PDLQ DWWULEXWH IRU WKHLU HIIHFn WLYHQHVV 7KLV SURSHUW\ KRZHYHU PDNHV GHZDWHULQJ DQG GLVn SRVDO RI WKH VOXGJH SURGXFHG IURP WKH WUHDWPHQW SURFHVV H[WUHPHO\ GLIILFXOW DQG FRVWO\ :DWHU SODQW ZDVWHV DUH UHFRJQL]HG WRGD\ DV DQ LQGXVWU\ZLGH SROOXWLRQ SUREOHP WKDW PXVW EH VROYHG ,W LV HVWLPDWHG WKDW RYHU WRQV RI DOXP VOXGJH DUH SURGXFHG HDFK \HDU ZLWK OHVV WKDQ HLJKW SHUFHQW UHFHLYLQJ WUHDWPHQW RI DQ\ NLQG EHIRUH GLVSRVDOA 7KH FKDUDFWHULVWLFV RI WKH ZDVWH SURGXFWV IURP ZDWHU SODQWV DUH KLJKO\ YDULDEOH ERWK ZLWKLQ DQG DPRQJ SODQWV $ FRQVLGHUDEOH HIIRUW KDV EHHQ PDGH WR FKDUDFWHUL]H WKHVH ZDVWHV ZLWK WKH IROORZLQJ UDQJHV LQ FKDUDFWHULVWLFV EHLQJ UHSRUWHG f f PJ b b RI 7RWDO 6ROLGV b b RI 7RWDO 6ROLGV PJ PJ 7RWDO 6ROLGV 6XVSHQGHG 6ROLGV 9RODWLOH 6ROLGV ,A2'I XOWLPDWH %2' FRQVLGHUDEO\ KLJKHUf &2' +LJKHU YDOXH ZKHUH DFWLYDWHG FDUERQ SUHVHQWf

PAGE 14

7KH UHGXFWLRQ RI YROXPH DQG PRLVWXUH FRQWHQW LV RI SULPDU\ FRQFHUQ LQ DOXP VOXGJH GLVSRVDO ,Q D VWXG\ RI WZR ZDWHU SODQWV 1HXEDXHU IRXQG WKH YROXPH RI DOXP VOXGJH SURn GXFHG WR UDQJH IURP WR b RI WKH WRWDO SODQW IORZ 0HWKRGV ZKLFK KDYH EHHQ HPSOR\HG ZLWK YDU\LQJ GHJUHHV RI VXFFHVV WR FRQFHQWUDWH DQG GHZDWHU DOXP VOXGJH LQFOXGH f *UDYLW\ WKLFNHQLQJ VWLUUHG WKLFNHQHUV DQG ODPHOOD VHGLPHQWDWLRQ f f W f /DJRRQV J f 'U\LQJ EHGV f :HGJH ZLUH ILOWUDWLRQ f 9DFXXP ILOWUDWLRQ f 3UHVVXUH ILOWUDWLRQ f &HQWULIXJDWLRQA f )UHH]LQJA $V D PHDQV RI RIIVHWWLQJ VRPH RI WKH FRVWV IRU WUHDWLQJ WKH VOXGJH DOXP UHFRYHU\ KDV EHHQ DWWHPSWHG DW VHYHUDO ZDWHU SODQWV -HZHOO A LQ SDWHQWHG VXOIXULF DFLG UHJHQHUDn WLRQ RI DOXP DQG LQ 0DWKLVnA REWDLQHG D VLPLODU SDWHQW ,Q %ODFN /DERUDWRULHV VXJJHVWHG XWLOL]LQJ VXOIXU GLR[LGH JDV IURP ERLOHU VWDFNV DV D VRXUFH RI VXOIXULF DFLG IRU DOXP UHFRYHU\ DW 2UODQGR )ORULGD 5REHUWV DQG 5RGG\ UHSRUWHG RQ LQYHVWLJDWLRQV IRU DOXP UHFRYHU\ DW 7DPSD )ORULGD ZKLFK ODWHU ZDV SUDFWLFHG IRU D VKRUW ZKLOH EXW ZDV GLVFRQWLQXHG GXH WR RSHUDWLRQDO SUREOHPV 7DPSDnV VRXUFH RI UDZ ZDWHU YDULHG ZLGHO\ LQ KDUGQHVV DQG RUJDQLF FRORU FRQWHQW $OXPLQXP VXOIDWH ZDV XVHG RQO\ GXULQJ WLPHV RI

PAGE 15

KLJK RUJDQLF FRORU PDNLQJ UHFRYHU\ DQ LQWHUPLWWHQW RSHUDn WLRQ +LJKHU GRVDJHV RI UHFRYHUHG DOXP KDG WR EH XVHG GXH WR WKH UHOHDVH IURP WKH VOXGJH RI RUJDQLF FRORU UHGXFLQJ WKH HIIHFWLYHQHVV RI WKH FRDJXODQW 7KH $VDND 3XULILFDWLRQ 3ODQW LQ 7RN\R UHSRUWV UHFRYHU\ RI DV PXFK DV b RI WKH DOXPLQXP XVLQJ WKH VXOIXULF DFLG SURFHVV ,URQ RU PDQJDn QHVH ZKLFK PLJKW EH SUHVHQW LQ WKH VOXGJH LV DOVR VROXn ELOL]HG 7KLV FDXVHV DQ LQFUHDVH LQ WKH FRQFHQWUDWLRQ RI WKHVH HOHPHQWV PDNLQJ LW QHFHVVDU\ WR ZDVWH D SRUWLRQ RI WKH UHFRYHUHG DOXP IURP WLPH WR WLPH $OXP UHFRYHU\ LV DOVR SUDFWLFHG DW WKH 'DHU :RUNV LQ 6FRWODQG DQG LV EHLQJ LQYHVWLJDWHG IRU XVH DW 0LQQHDSROLV 0LQQHVRWDA /LPH UHFRYHU\ LQ VRIWHQLQJ SODQWV LV SUDFWLFHG LQ VHYHUDO $PHULFDQ FLWLHV ZLWK SURILWDEOH RSHUDWLRQV EHLQJ UHSRUWHG IRU WZR FLWLHVAfA 7KH H[FHVV OLPH SURGXFHG LV VROG WR QHLJKERULQJ FLWLHV IRU D SURILW /LPH UHFRYHU\ LV SUHVHQWO\ HFRQRPLFDOO\ DWWUDFWLYH RQO\ IRU VRIWHQLQJ SODQWV XVLQJ WR WRQV RI OLPH D GD\ :KLOH WKHUH DUH PDQ\ PHWKRGV RI WUHDWLQJ DQ DOXP VOXGJH RQO\ LQ XQXVXDO FDVHV KDV WKH WUHDWPHQW EHHQ IRXQG WR EH VDWLVIDFWRU\ RU HFRQRPLFDOO\ DWWUDFWLYH 7KH $::$ FRQIHUHQFH UHSRUW RQ SODQW QHHGV VWDWHV ,Q VXPPDWLRQ WKH SULQFLSDO QHHGV DUH WR ILQG HIIHFWLYH DQG HFRQRPLFDO PHDQV WKURXJK UHVHDUFK WR GLVSRVH RI ZDWHU WUHDWPHQW SODQW ZDVWHV E\ GLUHFW WUHDWPHQW RI VOXGJH RU E\ HOLPLQDWLQJ XQGHVLUDEOH FKHPLFDOV VXFK DV DOXP WKURXJK FKDQJHV LQ ZDWHU WUHDWPHQW PHWKRGV

PAGE 16

,Q DQVZHU WR WKHVH QHHGV DQ HQWLUHO\ QHZ V\VWHP RI ZDWHU WUHDWPHQW FKHPLVWU\ KDV EHHQ GHYHORSHG XWLOL]LQJ PDJn QHVLXP FDUERQDWH DV WKH FRDJXODQW 7KH DGGLWLRQ RI VXIILn FLHQW OLPH VOXUU\ WR D ZDWHU FRQWDLQLQJ PDJQHVLXP ELFDUERQ QDWH DQGRU WR ZKLFK PDJQHVLXP FDUERQDWH KDV EHHQ DGGHG SUHFLSLWDWHV ERWK PDJQHVLXP K\GUR[LGH DQG FDOFLXP FDUERQDWH &DUERQDWLRQ RI WKH VOXGJH VROXELOL]HV WKH PDJQHVLXP DV PDJn QHVLXP ELFDUERQDWH ZKLFK FDQ EH UHFRYHUHG E\ YDFXXP ILOWUDn WLRQ DQG WKH ILOWUDWH UHF\FOHG DQG UHXVHG 7KH ILOWHU FDNH RI &D&2A DQG FOD\ LV HDVLO\ KDQGOHG DQG GLVSRVHG RI DV ODQG ILOO /LPH UHFRYHU\ ZRXOG IXUWKHU UHGXFH WKH YROXPH RI VOXGJH WR EH GLVSRVHG RI 7KH IORFFXODQW SURSHUWLHV RI PDJQHVLXP K\GUR[LGH KDYH ORQJ EHHQ HYLGHQW ,W LV WKHVH SURSHUWLHV KRZHYHU ZKLFK KDYH WURXEOHG FRQYHQWLRQDO ZDWHU VRIWHQLQJ SODQWV 7KH JHODWLQRXV QDWXUH RI PDJQHVLXP K\GUR[LGH LQ PDQ\ ZD\V VLPLODU WR WKH K\GURO\VLV SURGXFWV RI DOXPLQXP PDNHV WKH GHZDWHULQJ RI WKH VOXGJH GLIILFXOW $OVR ZKHUH UHFRYHU\ RI OLPH LV SUDFWLFHG WKH PDJQHVLXP K\GUR[LGH PXVW EH VHSDn UDWHG EHIRUH FDOFLQDWLRQ EHFDXVH RI EXLOGXS RI LQVROXEOH PDJQHVLXP R[LGH LQ WKH UHFRYHUHG OLPH 9DULRXV WHFKQLTXHV KDYH EHHQ GHYHORSHG WR VHSDUDWH WKH PDJQHVLXP K\GUR[LGH IURP WKH FDOFLXP FDUERQDWH 7KH XVH RI D FHQWULIXJH WR VHOHFn WLYHO\ FODVVLI\ LW LQWR WKH FQWUDWH GRHV QRW SURYLGH WKH GHJUHH RI VHSDUDWLRQ QHHGHG 7KUHHSKDVH VHOHFWLYH VRIWn HQLQJ KDV EHHQ XVHG DW /DQVLQJ 0LFKLJDQ IRU VRPH \HDUV GXULQJ WKH ZLQWHU PRQWKV RI ORZ ZDWHU GHPDQG ,Q WKLV

PAGE 17

SURFHVV WKH GRVDJH RI OLPH DGGHG LQ WKH ILUVW SKDVH LV MXVW VXIILFLHQW WR SUHFLSLWDWH WKH FDOFLXP ELFDUERQDWH DQG FRQn YHUW WKH PDJQHVLXP ELFDUERQDWH WR WKH VROXEOH FDUERQDWH ,Q WKH VHFRQG SKDVH H[FHVV OLPH LV DGGHG WR SUHFLSLWDWH DOO PDJQHVLXP KDUGQHVV DV 0J+f! 7KLV UHTXLUHV D OLPH GRVDJH ZHOO DERYH VWRLFKLRPHWU\ 7KLV VHFRQG SKDVH HIIOXHQW ZLWK D S+ RI DERXW SDVVHV WR WKH WKLUG SKDVH ZKHUH LW LV PL[HG ZLWK MXVW HQRXJK UDZ ZDWHU WR XWLOL]H WKH H[FHVV OLPH LQ UHPRYLQJ FDOFLXP KDUGQHVV 3KDVHV DQG VOXGJHV DUH PDLQO\ &D&2A SKDVH VOXGJH PDLQO\ 0J+fr 6LQFH WKLV SURFHVV FDQQRW EH XVHG WR VRIWHQ ZDWHUV FRQWDLQLQJ HLWKHU FRORU RU WXUELGLW\ DQG UHTXLUHV H[WUHPHO\ FDUHIXO FRQWURO LW LV VHOGRP XVHG %XUHDLL RI 0LQHV 7HFKQLFDO 3DSHU 1R GHVFULEHV DQ LQGXVWULDO SURFHVV IRU VHSDUDWLQJ 0J2 IURP LWV RUHV EUXFLWH RU GRORPLWH LQ ZKLFK WKH FDOFLQHG DQG ILQHO\ JURXQG RUH LV VOXUULHG DQG FKLOOHG 7KH 0J2 SUHVHQW LV WKHQ GLVn VROYHG E\ SXUH &2 ZLWK FRQWLQXRXV FRROLQJ WR QHXWUDOL]H WKH KLJK KHDW RI K\GUDWLRQ RI WKH 0J2 %ODFN t (LGVQHVV ZHUH DEOH WR VHOHFWLYHO\ GLVVROYH WKH 0J+f IURUD WKH &D&2A LQ WKH OLPHVRGD VRIWHQLQJ VOXGJH DW 'D\WRQ 2KLR WKXV PDNLQJ LW SRVVLEOH WR UHFDOFLQH WKH &D&2A DQG SURGXFH KLJK TXDOLW\ TXLFNOLPH 7KLV VOXGJH FDU ERQDWLRQ EDVLQ WKH RQO\ RQH RI LWV NLQG LQ WKH ZRUOG KDV EHHQ RSHUDWLQJ VXFFHVVIXOO\ VLQFH :KLOH PDJQHVLXP K\GUR[LGH LV JHQHUDOO\ UHJDUGHG DV D OLDELOLW\ LW KDV EHHQ UHFRJQL]HG DV DQ HIIHFWLYH FRDJXODQW

PAGE 18

)OHQWMH LQ IRXQG LQFUHDVLQJ FODULILFDWLRQ HIILFLHQF\ LQ WKH ZDWHU WUHDWPHQW SODQW DW 2NODKRPD &LW\ DV H[FHVV OLPH ZDV DGGHG +H UHDVRQHG WKLV WR EH GXH WR SUHFLSLWDWLRQ RI PDJQHVLXP DV WKH K\GUR[LGH 6HYHUDO MDU WHVWV ZHUH SHUn IRUPHG ZKLFK LQGLFDWHG WKDW PDJQHVLXP LQ WKH IRUP RI PDJn QHVLXP FKORULGH LV DQ HIIHFWLYH FRDJXODQW 7KH H[FHVV OLPH WUHDWPHQW ZDV SUDFWLFHG LQ FRQMXQFWLRQ ZLWK IHUULF VXOIDWH RQ D IXOO SODQW VFDOH WR WUHDW WKH KDUG WXUELG ULYHU ZDWHU 7KH REMHFWLYH ZDV WR HPSOR\ WKH PDJQHVLXP ELFDUERQDWH QDWXn UDOO\ SUHVHQW LQ WKH ZDWHU )OHQWMH QRWHG QR GHFUHDVH LQ ILOWHU UXQV OHVV DOJDH LQ WKH VHWWOLQJ EDVLQV DQG JUHDWHU EDFWHULD UHPRYDO 1R DWWHPSW DW FRDJXODQW UHF\FOH ZDV PDGH DQG WKH H[FHVV OLPH IHG ZDV QRW VXIILFLHQW WR TXDQWLWDWLYHO\ SUHFLSLWDWH WKH PDJQHVLXP SUHVHQW LQ WKH ZDWHU ,Q /HFRPSWH UHSRUWHG WKH XVH RI PDJQHVLXP FDUERQDWH DV D FRDJXODQW IRU WKH UHFODPDWLRQ RI ZDWHU ZLWKLQ D SDSHU PLOO /LPH ZDV UHDFWHG ZLWK PDJQHVLXP FDUERQDWH SURGXFHG E\ WKH UHDFWLRQ RI ILQHO\ JURXQG PDJQHVLXP R[LGH DQG ELFDUERQDWH DONDOLQLW\ SUHVHQW LQ WKH ZDWHU WR SUHFLSLn WDWH PDJQHVLXP K\GUR[LGH 1R DWWHPSW ZDV PDGH DW PDJQHVLXP UHFRYHU\ 7KH ZDWHU WR EH WUHDWHG FRQWDLQHG WR SRXQGV RI VXVSHQGHG VROLGV SHU RQH WKRXVDQG JDOORQV ZLWK IOXFWXDWLRQV LQ RUJDQLF FRORU 7KH FKHPLFDO FRVW RI WKH ZDWHU SURGXFHG ZDV HVWLPDWHG DW VL[W\ILYH GROODUV SHU PLOn OLRQ JDOORQV ZLWK DGGLWLRQDO GLVLQIHFWLRQ EHQHILWV QRWHG GXH WR WKH H[FHVV FDXVWLFLW\

PAGE 19

$OWKRXJK ZDWHU FKHPLVWV KDYH ORQJ UHFRJQL]HG WKH HIIHFWLYHQHVV RI PDJQHVLXP K\GUR[LGH DV D FRDJXODQW WKH XVH RI PDJQHVLXP VDOWV KDV QRW UHFHLYHG DFFHSWDQFH IRU HFRQRPLF UHDVRQV %RWK WKH FKORULGH DQG WKH VXOIDWH FRVW PRUH SHU SRXQG WKDQ DOXP DQG WKHLU XVH LQ FRQMXQFWLRQ ZLWK OLPH ZRXOG LQFUHDVH WKH QRQFDUERQDWH KDUGQHVV RI WKH ZDWHU EHLQJ WUHDWHG LQ GLUHFW UDWLR WR WKH PDNHXS GRVDJH UHTXLUHG 7KH FRVW RI PDJQHVLXP FDUERQDWH FXUUHQWO\ TXRWHG DW T SHU SRXQG KDV DOZD\V EHHQ SURKLELWLYH +RZHYHU WKUHH IDFWRUV QRZ LQGLFDWH HYHQ GHPDQG WKDW WKH ZLGHVSUHDG XVH RI PDJQHn VLXP FDUERQDWH UHFHLYH PRVW FDUHIXO FRQVLGHUDWLRQ f $V VWDWHG SUHYLRXVO\ WUHDWPHQW RI ZDWHU SODQW ZDVWHV LV EHFRPLQJ PDQGDWRU\ 7KH GHZDWHULQJ RI WKLV VOXGJH LV DQ LQWHJUDO SDUW RI WKH PDJn QHVLXP UHFRYHU\ SURFHVV f 5HFRYHU\ DQG UHF\FOH RI D FRDJXODQW KDYH QRW SURYHQ SUDFWLFDO LQ WKH SDVW $Q HFRQRPLFDO HDVLO\ FRQWUROOHG SURFHVV LV QRZ DYDLODEOH IRU WKH UHFRYHU\ RI PDJQHVLXP FDUERQDWH IRU FRDJXODQW UHF\FOH f $ QHZ ORZFRVW VRXUFH RI PDJQHVLXP FDUERQDWH ZLOO VRRQ EH DYDLODEOH ,W ZLOO EH UHFRYHUHG DW ORZ FRVW IURP WKH VOXGJHV SURGXFHG E\ PDMRU SODQWV VRIWHQLQJ KLJK PDJQHVLXP ZDWHUV 6XFK SODQWV ZLOO EH DEOH WR VXEVWDQWLDOO\ UHGXFH WKHLU FKHPLFDO WUHDWPHQW FRVWV E\ Df HOLPL QDWLQH WKH XVH RI DOXP Ef VDOH RI UHFRYHUHG

PAGE 20

PDJQHVLXP FDUERQDWH DQG Ff UHFDOLQDWLRQ UHF\FOLQJ DQG UHXVH RI OLPH 2I SHUKDSV HTXDO LPSRUWDQFH LV WKH IDFW WKDW LQ VR GRLQJ WKH\ ZLOO KDYH HOLPLQDWHG WKHLU LQGLYLGXDO VOXGJH SROOXWLRQ SUREOHPV )RU PDQ\ ZDWHUV WKLV QHZ WUHDWPHQW PHWKRG ZLOO UHn VXOW LQ FRQVLGHUDEOH HFRQRPLF VDYLQJV DQG IRU DOO ZDWHUV LW ZLOO VROYH WKH SUREOHP RI VOXGJH GHZDWHULQJ DQG GLVSRVDO $V FRDJXODWLRQ ZLOO WDNH SODFH JHQHUDOO\ LQ WKH S+ UDQJH RI WR WKH QHHG IRU SUHFKORULQDWLRQ VKRXOG EH PLQL PL]HG DQG LQ PDQ\ FDVHV HOLPLQDWHG +RXVWRQ DQG +RRYHU ZHUH DPRQJ WKH ILUVW LQYHVWLJDWRUV WR UHSRUW WKH HIIHFW RI KLJK S+ RQ GLVLQIHFWLRQ LQ ZDWHU WUHDWPHQW ,Q 5LHKO HW DO UHSRUWHG WKDW DW D S+ OHYHO RI WR DQG D FRQWDFW WLPH RI IRXU KRXUV WKH UHPRYDO RI EDFWHULDO RUJDQn LVPV LV RQ WKH RUGHU RI b $OXP DQG IHUULF VXOIDWH KDYH EHHQ VKRZQ WR EH HIIHF WLYH LQ WKH FRDJXODWLRQ RI YLUXVHV +RZHYHU WKHVH LQYHVn WLJDWRUV IRXQG WKDW YLUXVHV UHPRYHG LQ WKH IORH IUDFWLRQ ZHUH QRW GHVWUR\HG DQG DFWLYH YLUXV FDQ EH UHFRYHUHG IURP WKH IORH %HUJ HW DO KDYH IRXQG WKDW GLVLQIHFWLRQ RI SROLR YLUXV FDQ EH DFFRPSOLVKHG E\ KLJK S+ )LJXUH IURP WKLV SXEOLFDWLRQ VKRZV WKH HIIHFW RI S+ RQ WKH VXUYLYDO RI SROLR YLUXV DV D IXQFWLRQ RI WLPH ,W FDQ EH FRQFOXGHG WKDW EDFWHULD DQG YLUXV QRW RQO\ FDQ EH UHPRYHG E\ WKH QHZ WUHDWn PHQW SURFHVV EXW GLVLQIHFWLRQ RI WKH RUJDQLVPV ZLOO DOVR WDNH SODFH

PAGE 21

9LUDO 6XUYLYDOSHU FHQW )LJ (IIHFW RI +LJK S+ RLO 3ROLRYLUXV /6Ff LQ )ORFFXODWHG PJ &D2+fDf 6DQG)LOWHUHG 6HFRQGDU\ (IIOXHQWV DW r & IURP %HUJ HW DO f Y2

PAGE 22

,Q WKLV KLJK S+ UDQJH RI FRDJXODWLRQ FRPSOHWH SUHn FLSLWDWLRQ RI LURQ DQG PDQJDQHVH VKRXOG RFFXU SRVVLEO\ HOLPn LQDWLQJ WKH QHHG IRU PRUH FRVWO\ WUHDWPHQW PHWKRGV 7KLV S+ HQYLURQPHQW ZRXOG EH XQIDYRUDEOH IRU DTXDWLF JURZWKV LQ VHWn WOLQJ EDVLQV 7KH RYHUDOO HIIHFW ZRXOG EH UHGXFWLRQ LQ WK XVH RI FKORULQH DQG VXEVHTXHQW FRVW VDYLQJV DW WKH VDPH WLPH LQFUHDVLQJ WKH WUHDWPHQW HIILFLHQF\ ,Q LQLWLDO VWXGLHV RI QHZ WHFKQRORJ\ LPSRUWDQW DUHDV RI UHVHDUFK PXVW EH OHIW IRU IXWXUH LQYHVWLJDWLRQV EHFDXVH RI WLPH OLPLWDWLRQV 7KH XVH DQG UHF\FOH RI PDJQHVLXP FDUn ERQDWH LV DQ HQWLUHO\ QHZ FRQFHSW LQ ZDWHU WUHDWPHQW FKHPLVn WU\ ,QLWLDO UHVHDUFK HIIRUWV KDYH EHHQ SODQQHG WR GHWHUn PLQH LI WKLV SURFHVV LV WHFKQLFDOO\ DQG HFRQRPLFDOO\ IHDVLn EOH 7KH VFRSH DQG REMHFWLYHV RI WKLV UHVHDUFK ZHUH WKHUHn IRUH DV IROORZV f (YDOXDWLRQ RI WKH SDUDPHWHUV LQYROYHG LQ WKH XVH DQG UHF\FOH RI PDJQHVLXP FDUERQDWH DV D FRDJXn ODQW IRU ERWK RUJDQLF FRORU DQG WXUELGLW\ LQ VRIW ZDWHUV 6WXGLHV RI ERWK V\QWKHWLF DQG QDWXUDO ZDWHUV DUH LQFOXGHG LQ WKLV SKDVH RI WKH UHVHDUFK f 'HYHORSPHQW RI D SUHGLFWLYH HTXDWLRQ WR GHWHUPLQH WKH PDJQHVLXP UHTXLUHPHQWV EDVHG RQ WKH SK\VLn FDO DQG FKHPLFDO FKDUDFWHULVWLFV RI D ZDWHU

PAGE 23

f 'HPRQVWUDWLRQ RI WKH HIIHFWLYHQHVV RI WKLV QHZ SURFHVV RQ D EURDG VSHFWUXP RI QDWXUDO ZDWHUV :DWHUV IURP WKH ODUJHVW FLWLHV LQ WKH FRXQWU\ ZHUH FKRVHQ WR SURYLGH D ZLGH VSHFWUXP RI UDQJH LQ FKHPLFDO DQG SK\VLFDO FKDUDFWHULVWLFV f (VWLPDWLRQ RI WKH FKHPLFDO FRVW RI WUHDWPHQW XVLQJ WKLV QHZ WHFKQRORJ\ DQG FRPSDULVRQ ZLWK WKH FKHPLFDO FRVWV XVLQJ DOXP WUHDWPHQW f &RPSDULVRQ RI WKH FKHPLFDO FKDUDFWHULVWLFV RI WKH WUHDWHG ZDWHUV XVLQJ PDJQHVLXP FDUERQDWH DQG DOXP WUHDWPHQW

PAGE 24

&+$37(5 7+(25(7,&$/ &216,'(5$7,21 0DJQHVLXP &KHPLVWU\ 0DJQHVLXP (TXLOLEULXP LQ :DWHU 0DJQHVLXP LV SUHVHQW WR VRPH H[WHQW LQ DOPRVW DOO QDWXUDO ZDWHUV $V D UXOH PDJQHVLXP FRQWHQW LQFUHDVHV ZLWK LQFUHDVLQJ ZDWHU KDUGQHVV 7KH UDWLR RI 0JAn&D LV TXLWH YDULDEOH EXW DOPRVW DOZD\V OHVV WKDQ ,Q 3HDWVRQAnV V\VWHP RI FODVVLI\LQJ PHWDOV PDJQHVLXP LV FODVVHG LQ JURXS $ WKH VDPH DV DOXPLQXP 7KH HOHPHQWV RI WKLV JURXS DUH YLVXDOL]HG DV KDYLQJ VSKHULFDO V\PPHWU\ ZLWK WKH HOHFWURQ VKHDWKV QRW UHDGLO\ GHIRUPHG E\ DGMDFHQW FKDUJHG LRQV 0HWDOV LQ WKLV FODVVLILFDWLRQ WHQG WR IRUP LQVROXEOH SUHFLSLWDWHV ZLWK 2+ &2 DQG 32A ZLWK VLPSOH HOHFWURVWDWLF ELQGLQJ RI FDWLRQ DQG OLJDQG XVHG WR H[SODLQ FRPSOH[ VWDELOLW\ ,Q QDWXUDO ZDWHU V\VWHPV PDJQHVLXP FDQ EH IRXQG LQ PDQ\ VROLG SKDVHV &RQVLGHULQJ RQO\ D V\VWHP FRPSRVHG RI FDUERQ GLR[LGH PDJQHVLXP DQG ZDWHU RQH FDQ FDOFXODWH ZKLFK VROLG SKDVH FRQWUROV PDJQHVLXP VROXELOLW\ 7KH VROLG SKDVHV RI PDJQHVLXP SUHVHQW DUH

PAGE 25

f %UXFLWH 0J+f 0J2+fVf W 0JA + OrJ &0V S. =S.A S+ >0J2+f @ ORJ >0J@ S+ f 0DJQHVLWH 0J&2A 0J&RVf W 0J &2RB =f f§n ORJ >0J@ S.VR ORJF ORJ FW ORJ >0J@ ORJF ORJ D f 1HVTXHKRQLWH 0J&r+ 0J&2AfKVf W 0J &2 K ORJ >0J@ S.VR ORJ ORJ D ORJ >0J@ ORJS ORJ D $* R .&DO PROnrn f ORJ VR X!

PAGE 26

$* R .&DO PROAf ORJ VR f +\GURPDJQHVLWH 0JA&f+fK 0J&f+fr+ W 0J &f" +f K ORJ >0J7@ OS.V 3. ORJF ORJ D S+ ORJF ORJ D S+

PAGE 27

$V 1HVTXHKRQLWH LV OHVV VROXEOH WKDQ PDJQHVLWH DW DOO S+ YDOXHV PDJQHVLWH ZLOO QRW EH FRQVLGHUHG ,Q )LJXUH Df S+VWDELOLW\ GLDJUDP LV VKRZQ IRU D WRWDO FDUERQDWH FRQFHQ B WUDWLRQ RI 0 %UXFLWH LV E\ IDU WKH OHDVW VROXEOH DW S+ YDOXHV DERYH ZLWK K\GURPDJQHVLWH FRQWUROOLQJ VROXELOLW\ IURP S+ WR DSSUR[LPDWHO\ 1HVTXHKRQLWH LV WKH OHDVW VROXEOH DW S+ YDOXHV EHORZ 'RORPLWH &D0J&&2AA} LV D YHU\ FRPPRQ VWDEOH SKDVH IRXQG LQ QDWXUH EXW DWWHPSWV WR SUHFLSLWDWH D GRORPLWH SKDVH IURP VXSHUVDWXUDWHG VROXWLRQV XQGHU DWPRVSKHULF FRQGLWLRQV KDYH EHHQ XQVXFFHVVIXO &RQVLGHUDEOH HIIRUW KDV EHHQ H[SHQGHG LQ GHWHUPLQLQJ WKH VROXELOLW\ SURGXFWFRQVWDQW IRU 0J2+f 7KH IROORZLQJ WDEOH OLVWV VRPH RI WKH YDOXHV UHSRUWHG LQ WKH OLWHUDWXUH ,QYHVWLJDWRU Wr& SN63 *DOODKHUA 5\]QHU HW DO .ULJH DQG $UQROG 7UDYHUV DQG 1RXYHO f .OUQH %ULWWRQ 5RRP Q L %XEH MDOGEDFKA 'XSUH DQG %LDODVA +HU] DQG 0XKV .RKOUDXVFK DQG 5RVH U /RYHQ 0DJQHVLXP K\GUR[LGH EHFRPHV OHVV VROXEOH DW LQFUHDVHG WHPSHUDWXUH )LJXUH WDNHQ IURP /DUVRQ /DQH DQG 1HII VKRZV WKLV HIIHFW

PAGE 28

),* 62/8%,/,7< ',$*5$0 )25 0$*1(6,80 ,1 :$7(5 $7 $70263+(5,& &21',7,216 727$/ &$5%21$7( ‘ ,f 0

PAGE 29

f§ f§ f§ Af ?1 ? ?? ? } 1 ; 7HPSHUDWXUH r) )LJ 7HPSHUDWXUH ,QIOXHQFH RQ 0DJQHVLXP 6ROXELOLW\ IURP /DUVRQ /DQH DQG 1HIIf6f 7KH GDVKHG FXUYHV UHSUHVHQW PDJQHVLXP VROXELOLW\ DV SDUWV SHU PLOOLRQ &D&2Rf WKH VROLG FXUYHV S+ YDULDWLRQ 7KH VROXELOLW\ FXUYHV DUH EDVHG RQ WKH VROXELOLW\ SURGXFW FRQVWDQWV RI 7UDYHUV DQG 1RXYHO

PAGE 30

7KH VROXELOLW\ SURGXFWV UHSRUWHG ZHUH IRU SXUH GLVn WLOOHG ZDWHU V\VWHPV H[WUDSRODWHG WR ]HUR LRQLF VWUHQJWK 0DQ\ IDFWRUV WHQG WR LQFUHDVH WKH VROXELOLW\ RI PDJQHVLXP LQ QDWXUDO ZDWHUV 6ROXELOLW\ LQFUHDVHV ZLWK LQFUHDVH LQ LRQLF VWUHQJWK DV H[SUHVVHG E\ WKH 'HE\H+XFNHO UHODWLRQVKLS 3.VR S&.VR ]P P=1fUAf ZKHUH 0Q1PVf A Q0 P1 .VR 0: De $ X LRQLF VWUHQJWK $Q LOOXVWUDWLRQ RI WKLV HIIHFW RQ WKH IRU 0J2+f XVLQJ V S D S&. A VR X X X X S. VS &RPSOH[DWLRQ RI WKH PDJQHVLXP ZLWK ERWK RUJDQLF DQG LQRUJDQLF OLJDQGV LQFUHDVHV WKH VROXELOLW\ 7KH IRUPDWLRQ RI LRQ SDLUV DOVR WHQGV WR LQFUHDVH WKH VROXELOLW\ ,RQ SDLUV GLIIHU IURP FRPSOH[HV LQ WKDW WKH PHWDO LRQ DQG WKH EDVH DUH VHSDUDWHG E\ RQH RU PRUH ZDWHU PROHFXOHV ZKLOH IRU D FRPSOH[ WKH OLJDQG LV LPPHGLDWHO\ DGMDFHQW WR WKH PHWDO FDWLRQA LW LV UHSRUWHG WKDW ZKLOH FRPSOH[ IRUPHUV SUHVHQW LQ VROXWLRQ PD\ RIWHQ KDYH OLWWOH RU QR HIIHFW RQ WKH VROXELOLW\ RI VROLGV WKH\ PD\ KRZHYHU DIIHFW WKH NLQHWLFV RI QXFOHDWLRQ DQG RI JURZWK DQG GLVVROXWLRQ RI FU\VWDOV /LPH LV FRPPRQO\ XVHG WR SUHFLSLWDWH PDJQHVLXP IURP ZDWHU DV PDJQHVLXP K\GUR[LGH 7KH K\GUR[LGH FRQFHQWUDWLRQ

PAGE 31

RI WKH ZDWHU FDQ EH LQFUHDVHG WR WKH QHFHVVDU\ OHYHO RQO\ DIWHU FRQYHUWLQJ DOO RI WKH &&! DQG +&a WR &B 7KHVH ZHOONQRZQ VRIWHQLQJ UHDFWLRQV DUH f & &D2+f W &D& + f &D+&f &D2+f r &D& + 0DJQHVLXP ELFDUERQDWH LV FRQYHUWHG WR PDJQHVLXP FDUn ERQDWH DQG PDJQHVLXP K\GUR[LGH RQ IXUWKHU DGGLWLRQ RI OLPH DV f 0J+&f &D2+f r 0J& &D& + f 0J& &D2+f W 0J2+f &D& ,I WKH PDJQHVLXP LQ WKH ZDWHU LV QRQFDUERQDWH KDUGQHVV WKHUH ZRXOG EH QR QHW FKDQJH LQ WRWDO KDUGQHVV RQO\ DQ H[FKDQJH RI FDOFLXP IRU PDJQHVLXP DV f 0J 6 &D2+f W 0J2+f &D 62Af 0DJQHVLXP FDUERQDWH XVHG DV D FRDJXODQW GRHV QRW DGG WR WKH WRWDO GLVVROYHG VROLGV DV VKRZQ LQ HTXDWLRQ f 7KH OLPH GRVDJHV QHFHVVDU\ IRU FRDJXODWLRQ DQG VRIWHQLQJ FDQ EH FDOFXODWHG DV 5HDFWLRQ & &D2+f +&ff &D2+f 0J&+ &D2+f 0Jnf &D2+f /LPH UHTXLUHG PJ RI &D2+f &D2+f" [ FR ] $LN DV &D&f Y &D2+f &D& 722 &D2+f 0J&n+ [ 0J&R+A 0J &D&f [ f B

PAGE 32

,Q SUDFWLFH b SXUH OLPH &D2 ZRXOG EH VODNHG DQG XVHG 7KXV WKH WRWDO OLPH GRVDJH IRXQG DERYH VKRXOG EH PXOWLSOLHG E\ f§\M\ \\\\\M\f§ RU WLPHV WKH &D2+f YDOXH GHWHUPLQHG &D&2A VXVSHQGHG LQ ZDWHU KDV EHHQ IRXQG WR EH QHJDn WLYHO\ FKDUJHG ZKLOH PDJQHVLXP K\GUR[LGH LV SRVLWLYHO\ FKDUJHG :KLOH WKH SDUWLFOHV KDYH EHHQ IRXQG WR FRH[LVW DEVRUSWLRQ XVXDOO\ WDNHV SODFH DQG RQH SUHGRPLQDWHV JLYLQJ WKH IORH HLWKHU D QHW SRVLWLYH RU QHJDWLYH FKDUJH )RU D ZDWHU FRQWDLQLQJ ERWK FDOFLXP DQG PDJQHVLXP WKH PRELOLW\ WHQGV WR EHFRPH OHVV QHJDWLYH DV WKH S+ LQFUHDVHV )LJXUH GHPRQVWUDWHV WKLV HIIHFW IRXQG LQ WKH FRDJXODWLRQ VWXG\ RI ZDWHU XVHG E\ 0RQWJRPHU\ $ODEDPD 7KLV LV GXH WR IRUPDWLRQ RI 0J2+f ZKLFK FDQ FDXVH FKDUJH UHYHUVDO LI VXIILFLHQW PDJ QHVLXP LV SUHVHQW )ORFFXODWLRQ‘RI FDOFLXP FDUERQDWH VXVn SHQVLRQV XVLQJ FRDJXODQW DLGV LV QRW QHFHVVDULO\ DFFRPSDQLHG E\ D GHFUHDVH LQ QHJDWLYH PRELOLW\ 7KHVH LQYHVWLJDWRUV UHSRUWHG WKDW PRELOLW\ LQ LWVHOI LV QRW D UHOLDEOH LQGLFDWRU RI WKH GHJUHH RI IORFFXODWLRQ 6DOWV RWKHU WKDQ PDJQHVLXP FDUERQDWH FRXOG EH XVHG DV WKH VRXUFH RI PDJQHVLXP 2QFH WKH PDJQHVLXP LV UHF\FOHG LW ZRXOG EH LQ WKH FDUERQDWH RU ELFDUERQDWH IRUP +RZHYHU DQ\ PDNHXS PDJQHVLXP VDOW VXFK DV 0J62A RU 0J&A} ZRXOG LQFUHDVH WKH QRQFDUERQDWH KDUGQHVV DV VKRZQ LQ UHDFWLRQ 0DJQHVLXP 5HFRYHU\ $V GLVFXVVHG LQ WKH LQWURGXFWLRQ WKH VROXELOL]DWLRQ RI PDJQHVLXP E\ FDUERQDWLRQ KDV EHHQ SUDFWLFHG E\ LQGXVWU\

PAGE 33

),* ())(&7 2) S+ 21 02%,/,7< )25 7+( ,1',&$7(' &2$*8/$17 '26$*(6

PAGE 34

IRU PDQ\ \HDUV +RZHYHU VXFK SURFHVVHV KDYH JHQHUDOO\ EHHQ FDUULHG RXW ZLWK VXSHUVDWXUDWHG PDJQHVLXP VROXWLRQV DQG SXUH &&! f :KLOH WKHVH SURFHVVHV PXVW EH FDUHIXOO\ FRQWUROOHG PDJQHVLXP UHFRYHU\ IURP ZDWHU SODQW VOXGJHV LV TXLWH VLPSOH ZLWK OLWWOH FRQWURO UHTXLUHG 7KH UHDFWLRQV ZKLFK WDNH SODFH DUH 0J2+fVf &  0J& + 0J& & + W 0J+&f :KHWKHU WKH UHDFWLRQ RFFXUV LQ RQH RU WZR VWHSV LV QRW NQRZQ %ODFN DQG (LGVQHVV FDUERQDWLQJ D VOXGJH FRQWDLQLQJ 0J,Of DQG J RI &D& ZLWK b &&!} IRXQG WKDW RQO\ PJ RI &D&&! ZDV GLVVROYHG DIWHU PLQXWHV f FDUERQDWLRQ DW D JDV IORZ ILYH WLPHV WKDW UHTXLUHG WR GLVVROYH DOO RI WKH 0J+f SUHVHQW $FFRUGLQJ WR -RKQVWRQZKR VWXGLHG WKH VROXELOLW\ RI FDOFLXP DQG PDJQHVLXP FDUERQDWHV LQ QDWXUDO ZDWHUV WKH HTXLOLEULXP UDWLR DW r& LV >0J @>&D@ ZKHQ WKH SDUWLDO SUHVVXUH RI & LQ WKH DWPRVSKHUH LV JUHDW HQRXJK WR SUHYHQW SUHFLSLWDWLRQ RI 0J+fm $QRWKHU H[SODQDWLRQ IRU WKHVH SKHQRPHQD LV WKDW D VDWXUDWHG VROXWLRQ RI &D+&f KDV D ORZHU S+ WKDQ D VDWXUDWHG VROXn WLRQ RI 0J+&f $V FDUERQDWLRQ SURFHHGV WKH S+ LV EXIIHUHG DW D S+ RI DSSUR[LPDWHO\ GXH WR WKH 0J+&fr DOORZLQJ OLWWOH RI WKH FDOFLXP WR GLVVROYH 0DJQHVLXP K\GUR[LGH PD\ DOVR UHDFW ZLWK WKH ELFDUERQn DWH WR SURGXFH PDJQHVLXP FDUERQDWH DV

PAGE 35

0J2+f 0J+&f + 0J&r+ ,I FRPSOHWH VROXWLRQ RI 0J2+f LV GHVLUHG REYLRXVO\ SUHn FLSLWDWLRQ RI 0J&n+ VKRXOG EH DYRLGHG ,Q SUDFWLFH WKLV LV DYRLGHG E\ LQFUHPHQWDO DGGLWLRQ RI IUHVK VOXGJH WR WKH FDUERQDWLRQ EDVLQ DQG PDLQWDLQLQJ D VOXGJHZDWHU UDWLR VXFK WKDW D VXSHUVDWXUDWHG VROXWLRQ RI 0J+&f LV QRW SURGXFHG 3URGXFWLRQ RI 0DJQHVLXP &DUERQDWH $W SUHVHQW PDJQHVLXP FDUERQDWH LV SURGXFHG IURP IRXU PDMRU VRXUFHV f )URP VHD ZDWHU ZLWKRXW HYDSRUDWLRQ XVLQJ VHD ZDWHU DQG OLPH DV WKH SULQFLSDO UDZ PDWHULDOV f )URP ELWWHUQV RU PRWKHU OLTXRUV IURP WKH VRODU HYDSRUDWLRQ RI VHD ZDWHU IRU VDOW f )URP GHHSZHOO EULQHV f )URP GRORPLWH ,QYHVWLJDWRUV DUH QRW LQ DJUHHPHQW UHJDUGLQJ WKH IRUPXODH IRU WKH VHYHUDO IRUPV RI PDJQHVLXP FDUERQDWH )RU WKLV GLVVHUWDWLRQ LW ZLOO EH DVVXPHG WKDW DW OHDVW WKUHH VDOWV PD\ EH SUHSDUHG E\ DHUDWLQJ DQ DTXHRXV VROXWLRQ RI PDJQHVLXP ELFDUERQDWH WKH SHQWDK\GUDWH 0J&n+ SUHn FLSLWDWHG EHORZ r& WKH WULK\GUDWH 0J&n+ SUHFLSn LWDWHG EHWZHHQ r& DQG D EDVLF FDUERQDWH ZKROH FRPn SRVLWLRQ LV PRVW FRPPRQO\ JLYHQ DV 0J&f0J2+fr[ + SUHFLSLWDWHG DERYH r& PRVW UDSLGO\ DQG FRPSOHWHO\ E\ ERLOLQJ %RWK WKH SHQWDK\GUDWH DQG WKH WULK\GUDWH VORZO\

PAGE 36

UHYHUW WR WKH EDVLF FDUERQDWH 0J2f &&! ‘ [LA2 XSRQ H[SRVXUH WR WKH DWPRVSKHUH 7KLV UHYHUVLRQ LV DFFHOHUDWHG ZKHQ PRLVn WXUH LV SUHVHQW DQG DW HOHYDWHG WHPSHUDWXUHV :KHQ KHDWHG WR r& GU\ 0J&2Af6SA2 LV TXLWH VWDEOHA 0J&2A2IA2 H[KLELWV DQ LQWHUHVWLQJ FKDQJH LQ VROXELOLW\ RQ KHDWLQJ WR r& )LJXUH GHPRQVWUDWHV WKLV LQFUHDVHG VROXELOLW\ HIIHFW 7KH GDWD IRU WKLV ILJXUH ZHUH FROOHFWHG IURP DQDn O\WLFDO VWXGLHV RI WKH 0J&2JAIA2 VOXGJH SURGXFHG LQ 'D\WRQ 2KLR ,W LV DVVXPHG WKDW WKH FRQYHUVLRQ WR WKH EDVLF FDUn ERQDWH LQYROYHV UHFU\VWDOOL]DWLRQ RI WKH DTXHRXV VROXWLRQ $W r& GU\ PDWHULDO ORVHV ZDWHU DQG &2 ZLWKRXW WKH DGGLn WLRQ RI ZDWHU 3RVVLEO\ SDUWLDO GHFRPSRVLWLRQ IXUQLVKHV VRPH ZDWHU ZKLFK FDQ WKHQ DVVLVW IXUWKHU FRQYHUVLRQ 0DJQHVLXP FDUERQDWH ZKLFK LV XVHG SULPDULO\ LQ WKH SDLQW SULQWLQJ UXEEHU DQG SKDUPDFHXWLFDO LQGXVWULHVL VHOOV IURP OE IRU WKH WHFKQLFDO JUDGH WR OE IRU WKH 863 JUDGH0RVW RI WKH SURGXFW SURGXFHG WRGD\ LV WKH EDVLF FDUERQDWH G0J&2A f0Jf n [IA2 $V GLVFXVVHG LQ WKH LQWURGXFWLRQ D QHZ VRXUFH RI PDJQHVLXP FDUERQDWH ZLOO EH VRRQ DYDLODEOH DW D JUHDWO\ UHn GXFHG FRVW $ SURFHVV KDV EHHQ GHYHORSHG E\ $ 3 %ODFN DQG WKH FLW\ RI 'D\WRQ 2KLR WR UHFRYHU LW IURP ZDWHU VRIWHQLQJ SODQW VOXGJHV n 3UHOLPLQDU\ FDOFXODWLRQV LQFOXGHG LQ WKH DSSHQGL[ LQGLFDWH WKDW DV PXFK DV WRQV RI PDJQHVLXP FDUERQDWH 0J&2\6+A2f FDQ EH SURGXFHG HDFK \HDU E\ WKH WZHQW\ FLWLHV VKRZQ 6XEVWLWXWLRQ RI 0J&2AfAOA2 IRU DOXP LQ WKH PRUH WKDQ ZDWHU WUHDWPHQW SODQWV QRZ XVLQJ LW

PAGE 37

0J&;+ DV LQGLFDWHGf PJ, ; ),* 62/8%,/,7< 2) 0J&;+ $6 $ )81&7,21 2) 7,0( )25 7+( ,1',&$7(' +<'5$7( )2506 KR 8

PAGE 38

ZRXOG UHTXLUH DSSUR[LPDWHO\ WRQV SHU \HDU DVVXPLQJ b UHFRYHU\ DQG UHF\FOLQJ RI WKH PDJQHVLXP DQG b PDNHn XS 7KHVH FDOFXODWLRQV DUH DOVR LQFOXGHG LQ WKH DSSHQGL[ 7KH FRVW WR SURGXFH 0J&2RA)A2 ZLWK WKLV QHZ WHFKQRn ORJ\ KDV EHHQ HVWLPDWHG WR EH OHVV WKDQ OE A &ROORLGDO 'HVWDEOL]DWLRQ &ROORLGDO GHVWDEOL]DWLRQ LV EHOLHYHG WR RFFXU LQ WZR VWHSV 7KH ILUVW ZKLFK LV DVVXPHG WR RFFXU YHU\ UDSLGO\ KDV EHHQ UHIHUUHG WR DV SHUUNUQHWLF FRDJXODWLRQ RU FRDJX ODWLRQ ,Q WKLV VWHS FKHPLFDO DQG SK\VLFDO LQWHUDFWLRQ EHWZHHQ WKH FROORLG WR EH UHPRYHG DQG WKH FRDJXODQW WDNHV SODFH 7ZR EURDG WKHRULHV KDYH EHHQ DGYDQFHG WR H[SODLQ WKH PHFKDQLVP 7KH ROGHU FKHPLFDO WKHRU\ DVVXPHV VWDELn OL]DWLRQ WR EH GXH WR FKHPLFDO LQWHUDFWLRQV VXFK DV FRPn SOH[ IRUPDWLRQ DQG SURWRQ WUDQVIHU 7KH SK\VLFDO WKHRU\ HPSKDVL]HV WKH FRQFHSW RI WKH HOHFWULFDO GRXEOH OD\HU &RXQWHULRQ DGVRUSWLRQ DQG FRPSDFWLRQ RI WKH GLIIXVH SRUWLRQ RI WKH GRXEOH OD\HU DUH DVVXPHG WR QHXWUDOL]H WKH FROORLGDO FKDUJH DQG EULQJ DERXW FRDJXODWLRQ $IWHU FRDJXODWLRQ RUWKRNLQHWLF FRDJXODWLRQ RU IORFFXODWLRQAr WDNHV SODFH QRUPDOO\ UHTXLULQJ D ORQJHU WLPH SHULRG ZLWK JHQWOH PL[LQJ FRQGLWLRQV 'XULQJ WKLV VWHS LQWHUSDUWLFOH EULGJLQJ RI WKH FRDJXODWHG FROORLGV IRUPV ODUJHU IORH SDUWLFOHV 7KH ILUVW FRDJXODQWV DOXP DQG LURQ VDOWV ZHUH FKRVHQ IRU WKHLU KLJKO\ JHODWLQRXV SURSHUWLHV /DWHU

PAGE 39

LQYHVWLJDWRUV DWWULEXWHG WKH 6KXOW]+DUG\aA f A HIIHFW DV WKH PDLQ DWWULEXWH RI WKHVH FRDJXODQWV +RZHYHU PRUH UHFHQW LQYHVWLJDWRUV IRXQG WKDW WKH K\GURO\VLV SURGXFWV ZHUH PXFK PRUH HIIHFWLYH WKDQ WKH WULYDOHQW PHWDO FDWLRQV f f 0DQ\ LQYHVWLJDWRUV KDYH UHSRUWHG WKH HIIHFW RI DQLRQV RQ WKH EURDGHQLQJ RI WKH RSWLPXP S+ IRU FRDJXODWLRQAAfA 7KH GLVSODFHPHQW RI K\GUR[LGH LRQV E\ KLJKO\ FRRUGLQDWLQJ DQLRQV KDV EHHQ SURSRVHG DV WKH PHFKDQLVP IRU WKHVH SKHQRPHQD A ,Q 0DWWVRQ GHPRQVWUDWHG WKH UHODWLRQVKLS EHWZHHQ PLFURHOHFWURSKRUHWLF PRELOLW\ RI FROORLGDO SDUWLFOHV DQG WKH DOXPLQXP VDOW GRVDJHV +RZHYHU WKLV WHFKQLTXH UH PDLQHG DOPRVW IRUJRWWHQ XQWLO ZKHQ 3LORSRYLFK HW DO VWXGLHG WKH HIIHFWV RI S+ DOXP GRVDJH ]HWD SRWHQWLDO DQG EDVH H[FKDQJH FDSDFLW\ RI FOD\ SDUWLFOHV RQ FRDJXODWLRQ 6HYHUDO LQYHVWLJDWRUV UHSRUWHG WKDW EDVH H[FKDQJH FDSDFLW\ ZDV DQ LPSRUWDQW IDFWRU LQ FRDJXODWLRQ f ,W ZDV DOVR IRXQG WKDW ZKLOH JRRG FRDJXODWLRQ RIWHQ RFFXUUHG QHDU ]HUR PRELOLW\ QR DEVROXWH UHODWLRQVKLS H[LVWHG ,Q D VHULHV RI SDSHUV 3DFNKDP SURSRVHG WKDW FRDJXn ODWLRQ ZDV GXH DOPRVW HQWLUHO\ WR D SK\VLFDO HQPHVKLQJ RU VZHHSLQJ GRZQ RI SDUWLFOHV E\ WKH KLJKO\ JHODWLQRXV SURSHUW\ RI WKH DOXPLQXP K\GURO\VLV SURGXFWV +H IRXQG WKDW WKH W\SH RI GLVSHUVHG SKDVH KDG UHODWLYHO\ OLWWOH HIIHFW RQ FRDJXODWLRQ FRQGLWLRQV SDFNKDPnV ZRUN DQG RWKHU UHFHQW LQYHVWLJDWRUV VHHP WR VXSSRUW WKH HDUO\ FRQWHQWLRQV WKDW WKH VWLFN\ JHODWLQRXV SURSHUW\ RI D FRDJXODQW LV SRVVLEO\ PRVW

PAGE 40

LPSRUWDQW 7KH PHFKDQLVP RI FRDJXODWLRQ VHHPV WR EH GHSHQn GHQW XSRQ WKH SURSHUWLHV RI WKH GLVSHUVHG SKDVH DQG WKH FRQGLWLRQV ZKLFK DUH SUHVHQW GXULQJ FRDJXODWLRQ &KHPLFDO DQG 3K\VLFDO 3URSHUWLHV RI 2UJDQLF &RORU :KLOH WKH RULJLQ RI RUJDQLF DFLGV IRXQG LQ QDWXUDO ZDWHUV LV VWLOO D VXEMHFW RI FRQWURYHUV\ PRVW LQYHVWLJDWRUV UHSRUW WKDW LW LV GXH WR DTXHRXV H[WUDFWLRQ IURP VRLO RU GHFD\LQJ YHJHWDWLRQ 6RPH LQYHVWLJDWRUV SURSRVH WKDW FRORU LQ ZDWHU LV DQ LQWHUPHGLDWH VWHS LQ WKH WUDQVIRUPDWLRQ RI RUJDQLF PDWWHU IURP OLYLQJ RU GHFD\LQJ ZRRG\ WLVVXH WR WKH VRLO RUJDQLF FRPSOH[ 7KH VWUXFWXUH RI WKH RUJDQLF DFLGV KDV EHHQ SURSRVHG WR EH DURPDWLF ZLWK K\GUR[\ FDUER[\ PHWKR[\ DQG FDUER[ =n \OLF DFLG JURXSV %ODFN DQG &KULVWPDQ XVLQJ DQ HOHFWURn GLDO\VLV FHOO ZLWK PHPEUDQHV RI YDU\LQJ SRUH VL]HV IRXQG WKDW b RI WKH RUJDQLF DFLG PROHFXOHV ZHUH EHWZHHQ DQG P\ +RZHYHU OLJKW VFDWWHU GDWD IRU WKLV VDPH RUJDQLF n FRORU VXJJHVWHG D ODUJHU VL]H $Q HOHPHQWDO DQDO\VLV RI RUJDQLF FRORU H[WUDFWHG IURP WHQ KLJKO\ FRORUHG QDWXUDO ZDWHUV JDYH WKH IROORZLQJ UHVXOWV &DUERQ b +\GURJHQ b 2[\JHQ b 6RPH LQYHVWLJDWRUV KDYH IRXQG QLWURJHQ SUHVHQW EXW WKH FDUERQQLWURJHQ UDWLR LV UHSRUWHG WR EH KLJKHU IRU PRUH KLJKO\ FRORUHG ODNHV LQGLFDWLQJ QLWURJHQ DV DQ LPSXULW\

PAGE 41

7KH PROHFXODU ZHLJKW RI WKH FRORUHG DFLGV LV JHQHUDOO\ EHOLHYHG WR UDQJH IURP WR +RZHYHU *MHVVLQJ XVLQJ 'LRIOR XOWUDILOWUDWLRQ PHPEUDQHV UHSRUWHG DSSUR[LPDWHO\ SHUFHQW RI WKH RUJDQLF DFLGV SUHVHQW KDG D PROHFXODU ZHLJKW KLJKHU WKDQ A .LWDQR REVHUYHG WKDW RUJDQLF DFLGV LQIOXHQFHG LQRUn JDQLF VROXELOLW\ HTXLOLEULXP DQG VXEVHTXHQW SUHFLSLWDWLRQ SURGXFWVA 6KDSLUR KDV IRXQG FRQVLGHUDEO\ PRUH LURQ LQ VROXWLRQ LQ QDWXUDO ZDWHUV WKDQ ZRXOG EH SUHGLFWHG E\ WKHRUHWLFDO VROXELOLW\ HTXLOLEULDA +H SURSRVHG SHSWL]Dn WLRQ RI WKH LURQ E\ KXPLF DFLGV ZLWK VRPH FKHODWLRQ DV WKH SRVVLEOH PHFKDQLVP 2OGKDP DQG *OR\QD n SURSRVH WKH PHFKDn QLVP IRU LQFUHDVHG LURQ VROXELOLW\ WR EH WKH DELOLW\ RI WKH KXPLF DFLGV WR UHGXFH )H WR LWV PRUH VROXEOH IRUP )H DQG WKH VXEVHTXHQW FRPSOH[DWLRQ RI WKH LURQ E\ WKH KXPLF DFLGV &RORU KDV EHHQ IRXQG WR YDU\ LQ LQWHQVLW\ DV D IXQF WLRQ RI S+ 6LQJOH\ HW DO KDYH GHYHORSHG D QRPRJUDSK ZKLFK ZLOO FRUUHFW WKH FRORU LQWHQVLW\ DW DQ\ S+ WR WKDW DW S+ DQ DUELWUDU\ VWDQGDUG %ODFN HW DOA KDYH IRXQG D VWRLFKLRPHWULF UHODWLRQn VKLS EHWZHHQ WKH IHUULF VXOIDWH GRVDJH UHTXLUHG IRU VDWLVn IDFWRU\ FRORU UHPRYDO DQG WKH UDZ ZDWHU FRORU LQ D VWXG\ RI FRORUHG ZDWHUV IURP GLIIHUHQW UHJLRQV RI WKH 8QLWHG 6WDWHV

PAGE 42

3K\VLFDO DQG &KHPLFDO 6WUXFWXUH RI 0RQWPRULOORQLWH DQG (PDWKOLWH &OD\V 0RQWPRULOORQLWH 7KH VWUXFWXUH RI WKLV JURXS RI FOD\V LV GHULYHG IURP LVRPRUSKRXV VXEVWLWXWLRQ RI WKH SURWRW\SH S\URSK\OOLWHA 3\URSK\OOLWH LV D WKUHHOD\HUHG FOD\ FRPSRVHG RI WZR WHWUDn KHGUDO DQG RQH RFWDKHGUDO VKHHWV PDGH XS RI R[\JHQ VLOLFD K\GUR[LGH DQG DOXPLQXP 7KH VXEVWLWXWLRQ RI D ORZHU SRVLWLYH YDOHQFH HOHPHQW IRU RQH RI KLJKHU YDOHQFH UHVXOWV LQ DQ H[FHVV RI QHJDWLYH FKDUJH DV ZRXOG EH WKH FDVH IRU WKH VXEVWLWXWLRQ RI PDJQHVLXP IRU DOXPLQXP 7KLV H[FHVV FKDUJH LV FRPSHQVDWHG E\ WKH DGVRUSWLRQ RQ WKH OD\HU VXUIDFHV RI FDWLRQV ZKLFK DUH WRR ODUJH WR EH DFFRPPRGDWHG LQ WKH LQWHULRU RI WKH ODWWLFH 7KHVH FRPSHQVDWLQJ FDWLRQV FDQ EH HDVLO\ H[FKDQJHG LQ WKH SUHVHQFH RI ZDWHU WKXV WKH\ DUH WHUPHG H[FKDQJHDEOH FDWLRQV 7KH DPRXQW WKDW FDQ EH H[n FKDQJHG H[SUHVVHG LQ PLOOLHTXLYDOHQWV IRU JUDPV RI GU\ FOD\ LV FDOOHG WKH FDWLRQ H[FKDQJH FDSDFLW\ &(&f RU WKH EDVH H[FKDQJH FDSDFLW\ %(&f RI WKH FOD\ 0RQWPRULOORQLWH ZKHQ SODFHG LQ ZDWHU XQGHUJRHV LQWHUOD\HU VZHOOLQJ ZKLFK OHDGV WR DQ LQFUHDVH LQ FOD\ YROXPH 7KLV VZHOOLQJ DOORZV H[FKDQJH RI LQWHUOD\HU FDWLRQV WKXV PRQWPRULOORQLWH FOD\ KDV D KLJK EDVH H[FKDQJH FDSDFLW\ (PDWKOLWH (PDWKOLWH RU IXOOHUV HDUWK LV FRQVLGHUHG DQ LOOLWH FOD\ ,W LV DOVR D WKUHHOD\HUHG FOD\ EXW GRHV QRW XQGHUJR

PAGE 43

LQWHUOD\HU VZHOOLQJ /DWWLFH VXEVWLWXWLRQV RFFXU SUHGRPLn QDWHO\ LQ WKH WHWUDKHGUDO VKHHW ZLWK SRWDVVLXP LRQV DFWLQJ DV WKH SULQFLSDO FRPSHQVDWLQJ FDWLRQV 6LQFH RQO\ WKH H[WHUQDO FDWLRQV DUH H[FKDQJHDEOH WKH FDWLRQ H[FKDQJH FDSDFLW\ LV FRQVLGHUDEO\ ORZHU WKDQ IRU PRQWPRULOORQLWH FOD\V &KHPLVWU\ RI ,URQ &RUURVLRQ DQG &RQWURO E\ &DOFLXP &DUERQDWH 'HSRVLWLRQ ,Q WKH FRUURVLRQ UHDFWLRQ LURQ UHSODFHV WKH K\GURn JHQ LRQV RI ZDWHU DW WKH DQRGH ZKLOH DW WKH FDWKRGH K\GURn JHQ LRQV DUH UHPRYHG 8QGHU DHURELF FRQGLWLRQV WKH K\GURn JHQ LRQ FDQ EH UHPRYHG DV + H W + + H b +a + H W + 7KXV R[\JHQnV UROH LQ FRUURVLRQ LV WKH UHPRYDO RI K\GURJHQ LRQV IURP WKH PHWDO VXUIDFH 7KLV ZLOO FDXVH DQ LQFUHDVH LQ S+ RI WKH VROXWLRQ QHDU WKH FDWKRGLF UHJLRQ RI WKH FRUn URGLQJ VXUIDFH $W WKH VDPH WLPH LURQ SDVVHV LQWR VROXWLRQ LQ D IHUURXV FRQGLWLRQ DW WKH DQRGLF DUHD VXFK DV )Hr JR r )H& H )Hr KFR r )H& + R &' 2+ W )H2+f H

PAGE 44

8QGHU DQDHURELF FRQGLWLRQV WKH UDWH RI FRUURVLRQ LV D IXQFn WLRQ RI S+ ZLWK WKH FRUURVLRQ SURGXFWV QRUPDOO\ FDUULHG DZD\ DV )Hr + r )H + 7KH EDVLF REMHFWLYH RI FRUURVLRQ FRQWURO ZLWK FDOFLXP FDUERQDWH LV WKH GHSRVLWLRQ RI D WKLQ LPSHUYLRXV OD\HU RI WKH PDWHULDO RQ WKH PHWDO VXUIDFH 7KH GHYHORSPHQW DQG PDLQWHQDQFH RI WKLV OD\HU LV GHSHQGHQW XSRQ PDQ\ YDULDEOHV LQFOXGLQJ S+ DQG WRWDO DONDOLQLW\ 7KH %D\OLV &XUYH GHYHORSHG E\ %D\OLV LQ GHVFULEHV WKH S+ QHFHVVDU\ WR PDLQWDLQ WKH FDOFLXP FDUERQDWH FRDWLQJ DV D IXQFWLRQ RI WKH WRWDO DONDOLQLW\ /DQJHOLHU VXEVHTXHQWO\ GHYHORSHG DQ HTXDWLRQ IRU FDOFLXP FDUERQDWH ZKLFK FDQ EH XVHG WR GHILQH WKLV VDPH UHTXLUHG S+ LQ D PRUH VRSKLVWLFDWHG PDQQHU /DUVRQ DQG %XVZHOL DQG 5\]QRU GHYHORSHG LQGLFHV ZKLFK VLPSOLn ILHG WKH GHWHUPLQDWLRQ RI WKH RSWLPXP S+ IRU FDOFLXP FDUERQn DWH SURWHFWLRQ RI WKH GLVWULEXWLRQ V\VWHP 7KH S+ IRU FDOFLP FDUERQDWH HTXLOLEULXP FDQ EH FDOFXODWHG EXW WKH PDQ\ IDFWRUV LQYROYHG PDNHV LW GLIILFXOW WR DSSO\ LQ SUDFWLFH S+ WHPSHUn DWXUH WRWDO FDUERQDWH FRQFHQWUDWLRQ WRWDO GLVVROYHG VROLGV FDOFLXP YHORFLW\ RI WKH ZDWHU LQ WKH PDLQ DQG WKH SUHVHQFH RI SUHIRUPHG FU\VWDOV DOO DIIHFW WKLV HTXLOLEULXP 0DQ\ LQYHVWLJDWRUV LQGLFDWH D ORZHU OLPLW IRU DONDOLQLW\ DQG KDUGn QHVV RI WR PJ ZKHUH FDOFLXP FDUERQDWH SUHFLSLWDWLRQ LV HPSOR\HG IRU FRUURVLRQ FRQWURO ,W KDV EHHQ HVWDEOLVKHG WKDW WKH FDOFLXP FDUERQDWH GHSRVLWV IRUPHG LQ ORZ DONDOLQLW\ ZDWHUV DUH ODUJH DQG LUUHJXODU ZKLOH LQ KLJK DONDOLQLW\

PAGE 45

ZDWHUV GHQVH XQLIRUP FRDWLQJV ZLWK VPDOO DQRGLF DQG FDWKRGLF UHJLRQV DUH IRXQG RIIHULQJ EHWWHU SURWHFWLRQ DJDLQVW FRUURn VLRQA 7KHUH LV HYLGHQFH WKDW WKH UDWH RI FRUURVLRQ FDQ LQFUHDVH LQ ORZ DONDOLQLW\ DQG KDUGQHVV ZDWHUV ZKHUH DQ DWWHPSW LV PDGH WR HPSOR\ FDOFLXP FDUERQDWH SUHFLSLWDWLRQAn 7KLV KDV EHHQ UHODWHG WR D KLJK S+ GLIIHUHQWLDO EHWZHHQ WKH DQRGH DQG FDWKRGH EHFDXVH RI UHGXFHG EXIIHU FDSDFLW\ RI WKH ZDWHU DW WKH HOHYDWHG S+

PAGE 46

&+$37(5 (;3(5,0(17$/ 0$7(5,$/6 $1' 0(7+2'6 5HVHDUFK HIIRUWV VKRXOG RI QHFHVVLW\ EHJLQ ZLWK FRQn WUROOHG EDVLF V\VWHPV DQG DGYDQFH LQ FRPSOH[LW\ DV LQIRUPDn WLRQ LV REWDLQHG 7KLV VWXG\ EHJLQV ZLWK V\QWKHWLF ZDWHU ZKHUH V\VWHP YDULDEOHV FDQ EH HVWDEOLVKHG VR LW LV SRVVLEOH WR VWXG\ D VLQJOH YDULDEOH DW D WLPH 0DQ\ PHWKRGV KDYH EHHQ IW HPSOR\HG WR HYDOXDWH FRDJXODWLRQ SURFHVVHV EXW WKH MDU WHVW KDV EHHQ WKH PRVW ZLGHO\ XVHG DQG ZDV WKH SULPDU\ PHWKRG FKRVHQ IRU WKLV VWXG\ $Q LPSURYHG YHUVLRQ RI WKH MDU WHVW DSSDUDWXVn ZDV XVHG DV VKRZQ LQ )LJXUH 7KH MDU WHVW FRQn VLVWV RI D VHULHV RI MDUV FRQWDLQLQJ WKH DGMXVWHG SDUDn PHWHUV XQGHU VWXG\ ZLWK PL[LQJ SURYLGHG WR VLPXODWH DFWXDO SODQW FRQGLWLRQV 1RUPDOO\ D VHWWOLQJ SHULRG IROORZV PL[LQJ ZKHUH VHWWOLQJ FDQ EH HYDOXDWHG 0RGLILFDWLRQV KDYH EHHQ PDGH LQ RUGHU WR LQFUHDVH WKH LQIRUPDWLRQ REWDLQHG 7KH SDUDPHWHUV PHDVXUHG GXULQJ WKLV VWXG\ LQFOXGHG f &RDJXODWLRQ S+ f )RUPV RI DONDOLQLW\ DQG KDUGQHVV f 6HWWOHG FRORU DQG WXUELGLW\ f (OHFWURSKRUHWLF PRELOLW\ n0DQXIDFWXUHG E\ 7DXOPDQ (TXLSPHQW &RPSDQ\ $WODQWD *HRUJLD

PAGE 47

),* 08/7,3/( 67,55(5 )25 -$5 7(676

PAGE 48

f 5HVLGXDO PDJQHVLXP f +DUGQHVV DONDOLQLW\ DQG FRORU RI VWDELOL]HG ZDWHU f 9LVXDO REVHUYDWLRQ RI IORH SURSHUWLHV DQG VHWWOLQJ UDWHV &RDJXODQW UHFRYHU\ ZDV VWXGLHG LQ GHWDLO IRU ERWK V\QWKHWLF DQG QDWXUDO ZDWHUV $ YROXPH RI ZDWHU ZDV FRDJXn ODWHG WR SURGXFH IURP RQH WR WZR OLWHUV RI VOXGJH ZKLFK ZDV WKHQ FDUERQDWHG PRQLWRULQJ FDOFLXP PDJQHVLXP DQG RUJDQLF FRORU UHOHDVHG 7KH UHFRYHUHG PDJQHVLXP ZDV UHXVHG LQ RUGHU WR HYDOXDWH DQ\ FKDQJH LQ FRDJXODWLRQ HIIHFWLYHQHVV 6RPH ILOWUDELOLW\ VWXGLHV RI WKH FDUERQDWHG VOXGJH ZHUH SHUIRUPHG 0DWHULDOV 0RQWPRULOORQLWH DQG (PDWKOLWH &OD\ 6XVSHQVLRQV 7KH PRQWPRULOORQLWH ZDV PRQWPRULOORQLWH %HQWRQLWHf REWDLQHG IURP :DUGnV 1DWXUDO 6FLHQFH (VWDEOLVKPHQW ,QF 5RFKHVWHU 1HZ
PAGE 49

0DJQHVLXP &DUERQDWH 7KH PDJQHVLXP FDUERQDWH ZDV SUHSDUHG IURP ZDWHU VRIWHQLQJ SODQW VOXGJH DW 'D\WRQ 2KLR 7KH ZHW PDJQHVLXP FDUERQDWH ZDV VKLSSHG WR *DLQHVYLOOH ZKHUH LW ZDV DLU GULHG 7KH DQDO\VLV IRU DONDOLQLW\ DQG PDJQHVLXP RI D VROXWLRQ FRQWDLQLQJ J RI WKH PDWHULDO DOORZHG FDOFXODWLRQ RI WKH K\SRWKHWLFDO IRUPXOD ZKLFK ZDV IRXQG WR EH WKH WULK\GUDWH RI PDJQHVLXP FDUERQDWH 0J&2AA7A2 $ FKHPLFDO DQDO\VLV SHUIRUPHG E\ WKH 5HVHDUFK DQG $QDO\WLFDO /DERUDWRU\ RI WKH 0RQVDQWR &KHPLFDO &RPSDQ\ 'D\WRQ 2KLR RI D VLPLODU EDWFK RI PDJQHVLXP FDUERQDWH SURGXFHG LQ$SULO RI LQGLFDWHG WKH IROORZLQJ FRPSRVLWLRQr &RQVWLWXHQW 0DJQHVLXP 2[LGH 0J2 &DOFLXP 2[LGH &D2 &DUERQ 'LR[LGH &2 6LOLFRQ 'LR[LGH 62 $OXPLQXP 2[LGH $A2A )HUULF 2[LGH )H 6XOIXU 7ULR[LGH 62A &KORULGH &O 7RWDO ,QVROXEOHV /RVV RQ ,JQLWLRQ 3HUFHQW E\ :HLJKW

PAGE 50

)ORFFXODQW $LGV 7KH IORFFXODQW DLGV VWXGLHG LQFOXGHG DQ DQLRQLF SRWDWR VWDUFKnn +DPDFR $OXPnnnn $3 DQG DFWLYDWHG VUOUFD 6\QWKHWLF :DWHU &RQVWLWXHQWV 5HDJHQW JUDGH &D&A} 1D+&2A DQG .A62A ZHUH XVHG WR SUHSDUH VWRFN VROXWLRQV IRU DGMXVWLQJ WKH FDOFLXP DONDOLQn LW\ DQG VXOIDWH FRQFHQWUDWLRQV RI WKH V\QWKHWLF ZDWHU 3UHSDUDWLRQ RI 0DWHULDOV &OD\ 6XVSHQVLRQV %RWK FOD\V ZHUH SXOYHUL]HG E\ MDU PLOOLQJ IRU WZHQW\ IRXU KRXUV $SSUR[LPDWHO\ JUDPV RI WKH SXOYHUL]HG FOD\ DQG JUDPV RI UHDJHQW JUDGH VRGLXP FKORULGH ZHUH DGGHG WR IRXU OLWHUV RI ZDWHU 7KH VOXUU\ ZDV PL[HG IRU WZHQW\IRXU KRXUV DQG WKHQ GHZDWHUHG XVLQJ 1R :KDWPDQ ILOWHU SDSHU LQ D %XFKQHU IXQQHO 7KH FOD\ ZDV ZDVKHG ZLWK GLVWLOOHG ZDWHU DQG UHVXVSHQGHG LQ IRXU OLWHUV RI GLVWLOOHG ZDWHU $IWHU VHYHUDO KRXUV RI PL[LQJ WKH VOXUU\ ZDV DOORZHG WR VHWWOH WR UHPRYH WKH ODUJHU FOD\ SDUWLFOHV 7KH VXSHUQDWDQW ZDV ZLWKGUDZQ IRU XVH DV D VWRFN WXUELGLW\ VROXWLRQ nn$ SURGXFW RI 6WDOH\ 0DQXIDFWXULQJ 'LYLVLRQ 'HFDWXU ,OOLQRLV nn&HUWLILHG $OXPLQXP 6XOIDWH &U\VWDOV $O 6f f +2 $ SURGXFW RI 'RZ &KHPLFDO &RPSDQ\ 0LGODQG 0LFKLJDQ f$ SURGXFW RI 3KLODGHOSKLD 4XDUW] 3KLODGHOSKLD 3HQQV\OYDQLD

PAGE 51

7KLV SURFHVV ZDV VLPLODU WR WKDW XVHG E\ %ODFN DQG +DQQDK WR JLYH D PRUH XQLIRUP VXVSHQVLRQ DOORZ JUHDWHU SUHFLVLRQ RI PHDVXUHPHQW DQG WR SURPRWH H[FKDQJH UHDFWLRQV GXH WR WKH KLJK ]HWD SRWHQWLDO DVVRFLDWHG ZLWK WKH VRGLXP IRUP RI WKH FOD\ 7KHVH DXWKRUV XVLQJ WKH VDPH FOD\V IRXQG WKH EDVH H[FKDQJH FDSDFLW\ RI IXOOHUV HDUWK WR EH PLOOLHTXLYDOHQWV SHU OLWHU DQG WKDW RI WKH PRQWPRULOORQLWH WR EH PLOOLHTXLYDOHQWV SHU OLWHU 7KH EDVH H[FKDQJH FDSDFLWLHV RI WKHVH FOD\V ZHUH GHWHUPLQHG E\ WKH DPPRQLXP DFHWDWH PHWKRG XVHG LQ VRLO DQDO\VLV A 2UJDQLF &RORU &RQFHQWUDWH $ KLJKO\ FRQFHQWUDWHG SXUH IRUP RI QDWXUDOO\ RFFXUn ULQJ RUJDQLF FRORU ZDV QHHGHG 9DULRXV PHWKRGV KDYH EHHQ HPSOR\HG WR FRQFHQWUDWH RUJDQLF FRORU VXFK DV YDFXXP GLVWLOn ODWLRQ FDUERQ DGVRUSWLRQ IUHH]LQJ DQG LRQ H[FKDQJH 9DFXXP GLVWLOODWLRQ ZDV FKRVHQ EHFDXVH RI LWV VLPSOLFLW\ DYDLODELOLW\ RI D ODUJH YDFXXP VWLOO DQG UHSRUWHGO\ PLQRU HIIHFWV RQ WKH FKHPLFDO QDWXUH RI RUJDQLF FRORU 7KH ZDWHU FROOHFWHG ZDV ILUVW ILOWHUHG WKURXJK :KDWPDQ DVKOHVV ILOWHU SDSHU 7KH FRORU ZDV WKHQ FRQFHQWUDWHG XVLQJ D 3UHFLVLRQ 6FLHQWLILF )ODVK HYDSRUDWRUnn DV VKRZQ LQ )LJXUH 7KH RSHUDWLQJ YDFXXP ZDV PDLQWDLQHG E\ D YDFXXP SXPSnnnn DW FP RI PHUFXU\ DQG D WHPSHUDWXUH RI OHVV WKDQ 3URGXFW RI 3UHFLVLRQ 6FLHQWLILF &RPSDQ\ &KLFDJR ,OOLQRLV 3URGXFW RI :HOVK 6FLHQWLILF &RPSDQ\ 6NRNLH ,OOLQRLV

PAGE 52

),* )/$6+ (9$325$725 86(' 72 &21&(175$7( 25*$1,& &2/25

PAGE 53

r& 7KH FDSDFLW\ RI WKH YDFXXP SXPS OLPLWHG WKH HYDSRUDn WLRQ UDWH WR DERXW KU 7KH HYDSRUDWLRQ SURFHGXUH ZDV VHPLFRQWLQXRXV 7KH IHHG UDWH ZDV DGMXVWHG WR PDWFK WKH HYDSRUDWLRQ UDWH :KHQ WKH FRORU LQ WKH HYDSRUDWRU UHDFKHG WKH GHVLUHG FRQFHQWUDn WLRQ WKH HYDSRUDWRU ZDV HPSWLHG DQG WKH SURFHGXUH UHSHDWHG 7KH FRORU FRQFHQWUDWH ZDV ILOWHUHG WKURXJK D VHULHV RI :KDWPDQ I SDSHU WKHQ WKURXJK 0LOOLSRUH \ DQG \ ILOWHUV 7KH FRQFHQWUDWHG FRORU ZDV WKHQ SODFHG LQ GLDO\VLV WXELQJ DQG GLDOL]HG DJDLQVW GLVWLOOHG ZDWHU IRU WZHQW\IRXU KRXUV &KHPLFDO DQDO\VHV RI WKH XQWUHDWHG FRQn FHQWUDWHG DQG WUHDWHG FRQFHQWUDWH DUH VKRZQ LQ 7DEOH $OO FKHPLFDO DQDO\VHV ZHUH UXQ LQ DFFRUGDQFH ZLWK WKH SURn FHGXUHV RXWOLQHG LQ 6WDQGDUG 0HWKRGV ZLWK PHWDO LRQ GHWHUn PLQHG E\ DWRPLF DEVRUSWLRQ DQDO\VLV 7KH WZR EDWFKHV RI UDZ ZDWHU ZHUH FROOHFWHG WR REWDLQ WKH GHVLUHG YROXPH RI FRORU FRQFHQWUDWH 7KH FRORU FRQFHQWUDWH ZDV VWRUHG DW r& LQ WLJKWO\ VWRSSHUHG OLWHU ERWWOHV 6\QWKHWLF :DWHUV $ V\QWKHWLF ZDWHU ZKRVH FRPSRVLWLRQ ZDV GHVLJQHG WR UHSUHVHQW DV QHDUO\ DV SRVVLEOH D W\SLFDO VRIW VXUIDFH ZDWHU RI ORZ DONDOLQLW\ DQG WRWDO KDUGQHVV ZDV SUHSDUHG IURP WKH VWRFN VROXWLRQV OLVWHG HOVHZKHUH rrr3URGXFW RI 0LOOLSRUH )LOWHU &RUSRUDWLRQ %HGIRUG 0DVVDFKXVHWWV

PAGE 54

7$%/( &+(0,&$/ $1$/<6,6 2) 25*$1,& &2/25 )LOWHUHG DQG 5DZ 5DZ &RQFHQWUDWH 'LDOL]HG &RQFHQWUDWH S+ &RQGXFWLYLW\ \PKRFPf &RORU S+ f $FLGLW\ PJ &D&2Rf &2' PJf 76 PJf 966 PJf 1+1 PJf 2UJDQLF 1 PJf 72& PJf &1 5DWLR =1 PJf O f &X PJf 01 PJf )H PJf ? 0J PJf 1D PJf &D PJf &RQFHQWUDWLRQ )DFWRU &RORU &2' $FLGLW\ &RQGXFWLYLW\ 9ROXPH

PAGE 55

7KH V\QWKHWLF VWRFN VROXWLRQV ZHUH SUHSDUHG XVLQJ GHLRQL]HG GLVWLOOHG ZDWHU VR WKDW PO PJ RI &DDV &D&2Af! DONDOLQLW\ DV &D&f DQG 6Aa :RUNLQJ VROXWLRQV ZHUH SUHSDUHG E\ GLOXWLQJ WKHVH VWRFN VROXWLRQV WR ZLWK GHLRQL]HG GLVWLOOHG ZDWHU VR WKDW PO PJ RI WKH GHVLUHG FRQVWLWXHQWV 7KH V\QWKHWLF ZDWHU KDG WKH IROORZLQJ FRPSRVLWLRQ 0LOOLHTXLYDOHQWV SSP 0LOOLHTXLYDOHQWV SSP &D ,&• 1D ‘ VRA &On 7RWDO DONDOLQLW\ DV &D&2 SSP 7RWDO KDUGQHVV DV &D&2A SSP 7RWDO GLVVROYHG VROL GV SSP &RDJXODQWV $OXP 7KH DOXP VWRFN VROXWLRQ ZDV SUHSDUHG E\ DGGLQJ UHDn JHQW JUDGH DOXPLQXP VXOIDWH WR GHLRQL]HG GLVWLOOHG ZDWHU VR WKDW PO ZDV HTXDO WR PJ RI DOXPLQXP VXOIDWH 7KLV VROXWLRQ ZDV VWRUHG DW r& DQG XVHG GDLO\ WR SUHSDUH ZRUNLQJ VROXWLRQV E\ GLOXWLRQ ZLWK GLVWLOOHG ZDWHU VR WKDW PO PJ RI DOXPLQXP VXOIDWH 0J&2\ + )RU GRVDJHV RI OHVV WKDQ UDJ RI 0J&2A LW ZDV DGGHG DV D VROXWLRQ FRQWDLQLQJ H[DFWO\ J RI WKH

PAGE 56

PDWHULDO LQ OLWHU RI GHPLQHUDOL]HG ZDWHU )UHVK VROXWLRQV ZHUH SUHSDUHG ZHHNO\ :KHQ GRVDJHV JUHDWHU WKDQ PJ ZHUH WR EH XVHG WKH\ ZHUH DFFXUDWHO\ ZHLJKHG LQWR PO EHDNHUV DQG TXDQWLWDn WLYHO\ WUDQVIHUUHG WR WKH VWLUUHG ZDWHU VDPSOH DV D VOXUU\ ,Q WKH FDVH RI V\QWKHWLF ZDWHUV GHLRQL]HG ZDWHU ZDV XVHG WR SUHSDUH WKH VOXUU\ IRU QDWXUDO ZDWHUV WKH ZDWHU LWVHOI ZDV XVHG )ORFFXODQWV $OXP $ IUHVK VROXWLRQ FRQWDLQLQJ PJPO RI $A&62AfAn %+W2 ZDV SUHSDUHG GDLO\ IURP D VWRFN VROXWLRQ VWRUHG DW r& 6WDUFK 7KH VWDUFK VROXWLRQ ZDV SUHSDUHG GDLO\ E\ VORZO\ VLIWLQJ JUDP RI VWDUFK LQWR OLWHU RI GHLRQL]HG GLVn WLOOHG ZDWHU DQG UDSLGO\ PL[HG ZLWK D PDJQHWLF VWLUUHU $ ZRUNLQJ VROXWLRQ ZDV SUHSDUHG E\ GLOXWLQJ WR ZLWK GHLRQL]HG GLVWLOOHG ZDWHU VR WKDW PO PJ RI VWDUFK $FWLYDWHG 6LOLFD 7KH DFWLYDWHG VLOLFD VROXWLRQ ZDV SUHSDUHG DQG DFWLYDWHG LQ WKH IROORZLQJ PDQQHU f PO RI GLVWLOOHG ZDWHU ZDV DGGHG WR D PO JUDGXDWHG F\OLQGHU f PO RI JUDP VROXWLRQ RI 1 EUDQG VRGLXP VLOLFDWH DGGHG

PAGE 57

f PO RI 1 1+A&O ZDV DGGHG ZLWK FRQVWDQW VWLUn ULQJ WR WKH JUDGXDWHG F\OLQGHU f $IWHU PLQXWHVnDJLQJ WKH VROXWLRQ ZDV PDGH XS WR PO YROXPH ZLWK GLVWLOOHG ZDWHU DQG PL[HG WKRURXJKO\ $QDO\WLFDO 7HFKQLTXHV 'HWHUPLQDWLRQ RI 7XUELGLW\ DQG &RORU $ /XPHWURQ 0RGHO )LOWHU 3KRWRPHWHUnn ZDV XVHG IRU ERWK FRORU DQG WXUELGLW\ GHWHUPLQDWLRQV 6XIILFLHQW DFFXUDF\ ZDV REWDLQHG XVLQJ WKH UHG P\ ILOWHU DQG PP FHOO OLJKW SDWK IRU WXUELGLW\ GHWHUPLQDWLRQV $ FDOLEUDWLRQ FXUYH ZDV SUHSDUHG SORWWLQJ RSWLFDO GHQVLW\ REWDLQHG IRU D VDPSOH DJDLQVW WKH WXUELGLW\ YDOXHV SUHYLRXVO\ REWDLQHG IRU WKH VDPSOH XVLQJ D -DFNVRQ &DQGOH 7XUELGLPHWHU DV GHVFULEHG LQ 6WDQGDUG 0HWKRGV 7KH WXUELGLW\ VROXWLRQV XVHG IRU WKLV FDOLEUDWLRQ SURFHGXUH ZHUH SUHSDUHG XVLQJ WKH PDWKDOLWH FOD\ VWRFN VROXWLRQ 2UJDQLF FRORU ZDV PHDVXUHG XVLQJ D P\ ILOWHU DQG WKH PP FHOO OLJKW SDWK 7KH FDOLEUDWLRQ FXUYH IRU FRORU ZDV REWDLQHG E\ SORWWLQJ RSWLFDO GHQVLW\ DV D IXQFWLRQ RI YDULRXV GLOXWLRQV RI 3ODWLQXP&REDOW &RORU 6WDQGDUGn nnSURGXFW RI 3KRWRYROW &RUSRUDWLRQ 1HZ
PAGE 58

:KHQ FRORU DQG WXUELGLW\ ZHUH ERWK SUHVHQW LQ D VDPSOH D SURFHGXUH RXWOLQHG LQ WKH /XPHWURQ 2SHUDWLQJ 0DQXDOA ZDV IROORZHG 7KLV SURFHGXUH WDNHV DGYDQWDJH RI WKH IDFW WKDW RUJDQLF FRORU DEVRUEV OLJKW PRUH VWURQJO\ DW VKRUWHU ZDYH OHQJWKV &RORU ZRXOG WKHUHIRUH KDYH OLWWOH LQWHUIHUHQFH LQ WKH PHDVXUHPHQW RI WXUELGLW\ 7KH IROORZLQJ SURFHGXUH ZDV XVHG WR GHWHUPLQH FRORU LQ WKH SUHVHQFH RI WXUELGLW\ f )RU YDULRXV OHYHOV RI WXUELGLW\ WKH RSWLFDO GHQVLn WLHV ZHUH PHDVXUHG DW P\ $Q DYHUDJH YDOXH ZDV GHWHUPLQHG IRU WKH UDWLRV EHWZHHQ WKH RSWLFDO GHQVLW\ DW P\ DQG P\ 7KLV DYHUDJH YDOXH UHSUHVHQWV D FRQVWDQW IRU DQ\ OHYHO RI WXUELGLW\ DQG ZLOO EH GHQRWHG DV 5 f 7KH RSWLFDO GHQVLW\ RI WKH VDPSOH ZDV GHWHUPLQHG DW P\ DQG P\ f 5 PXOWLSOLHG E\ WKH RSWLFDO GHQVLW\ DW P\ UHSUHVHQWV WKH LQWHUIHUHQFH GXH WR WXUELGLW\ 6XEVWUDFWLQJ WKLV SURGXFW IURP WKH RSWLFDO GHQVLW\ IRXQG DW P\ JLYHV D YDOXH ZKLFK FDQ EH XVHG WR GHWHUPLQH WKH FRORU IURP WKH FDOLEUDn WLRQ FXUYH SUHYLRXVO\ SUHSDUHG $WRPLF $EVRUSWLRQ ,URQ VRGLXP PDJQHVLXP DQG FDOFLXP ZHUH GHWHUPLQHG E\ XVH RI D 0RGHO %HFNPDQ $WRPLF $EVRUSWLRQ 8QLWnnLQ FRPELQDWLRQ ZLWK D %HFNPDQ '%* *UDWLQJ 6SHFWURSKRWRPHWHU DQG nn3URGXFW RI %HFNPDQ ,QVWUXPHQW ,QF )XOOHUWRQ &DOLIRUQLD

PAGE 59

%HFNPDQ 3RWHQWLRPHWULF 5HFRUGHU ZLWK VFDOH H[SDQGHU 7KH SURFHGXUHV RXWOLQHG LQ 0HWKRGV IRU $QDO\VHV RI 6HOHFWHG 0HWDOV 2 2 LQ :DWHU E\ $WRPLF $EVRUSWLRQA ZHUH IROORZHG 7KH VWDQGDUGV ZHUH SUHSDUHG DV GHVFULEHG ZLWK WKH H[FHSWLRQ RI LURQ IRU ZKLFK UHDJHQW JUDGH IHUURXV DPPRQLXP VXOIDWH ZDV XVHG WR SUHn SDUH WKH VWDQGDUG VROXWLRQ $ FDOLEUDWLRQ FXUYH ZDV REWDLQHG HDFK WLPH WKH VDPSOHV ZHUH UXQ SORWWLQJ DEVRUEDQFH YHUVXV FRQFHQWUDWLRQ (OHFWURSKRUHWLF 0RELOLW\ 7KH HOHFWURSKRUHWLF PRELOLW\ GHWHUPLQDWLRQV ZHUH PDGH XVLQJ D =HWD0HWHU nZn VKRZQ LQ )LJXUH 7KH VDPSOHV ZHUH DQDO\]HG LPPHGLDWHO\ DIWHU FROOHFWLRQ XVLQJ WKH SRZHU PLFURVFRSH REMHFWLYH DQG D WZRKXQGUHG YROW SRWHQWLDO 7KH $ SURFHGXUH RXWOLQHG LQ WKH =HWD0HWHU 0DQXDO ZDV IROORZHG IRU DOO GHWHUPLQDWLRQV 1RUPDOO\ SDUWLFOHV ZHUH WUDFNHG IRU HDFK VDPSOH 6WDELOL]DWLRQ RI 7UHDWHG :DWHUV ,Q RUGHU WR PDNH SRVVLEOH D FRPSDULVRQ RI ERWK SK\VLn FDO DQG FKHPLFDO SDUDPHWHUV RI ZDWHUV FRDJXODWHG ZLWK PDJQHn VLXP DQG ZLWK DOXP DOO VDPSOHV ZHUH VWDELOL]HG WR S+ :DWHUV FRDJXODWHG ZLWK 0J&2A ZHUH VWDELOL]HG ZLWK &A 7KRVH FRDJXODWHG ZLWK DOXP ZHUH VWDELOL]HG ZLWK IUHVKO\ ILOWHUHG VDWXUDWHG OLPH ZDWHU nnSURGXFW RI =HWD0HWHU ,QF 1HZ
PAGE 60

),* =(7$0(7(5 86(' 72 '(7(50,1( 3$57,&/( 02%,/,7<

PAGE 61

6WDELOL]DWLRQ RI :DWHU &RDJXODWHG :LWK $OXP $SSUR[LPDWHO\ PO RI VHWWOHG ZDWHU ILOWHUHG LI QHFHVVDU\ ZDV WUDQVIHUUHG WR D PO EHDNHU SODFHG RQ D PDJQHWLF VWLUUHU DQG WLWUDWHG ZLWK FOHDU VDWXUDWHG OLPH ZDWHU WR S+ PHDVXUHG E\ D JODVV HOHFWURGH 7KH VDPSOH ZDV WKHQ ILOWHUHG WKURXJK :KDWPDQ 1R SDSHU DQG FRORU WRWDO DONDOLQLW\ WRWDO KDUGQHVV FDOFLXP DQG PDJQHVLXP GHWHUPLQHG 6WDELOL]DWLRQ RI :DWHU &RDJXODWHG :LWK 0DJQHVLXP &DUERQDWH $SSUR[LPDWHO\ PO RI VHWWOHG ZDWHU ZDV WUDQVIHUUHG WR D PO EHDNHU SODFHG RQ D PDJQHWLF VWLUUHU DSSUR[Ln PDWHO\ J RI UHDJHQW JUDGH SRZGHUHG &D& DGGHG DQG WKH VXVSHQVLRQ FDUERQDWHG E\ EORZLQJ WKURXJK D SLSHWWH ZLWK UDSLG PL[LQJ 7KUHH WR ILYH PLQXWHV ZHUH UHTXLUHG WR UHGXFH WKH S+ WR PHDVXUHG E\ D JODVV HOHFWURGH DV DERYH 7KH VXVSHQn VLRQ ZDV WKHQ ILOWHUHG WKUX :KDWPDQ 1R SDSHU DQG FRORU WRWDO DONDOLQLW\ WRWDO KDUGQHVV FDOFLXP DQG PDJQHVLXP GHWHUPLQHG $ONDOLQLW\ 7KH DONDOLQLW\ WLWUDWLRQV ZHUH SHUIRUPHG XVLQJ 1 ZLWK SKHQROSKWKDOHLQ DQG PHWK\O SXUSOH LQGLFDWRUV DV GHVFULEHG LQ 6WDQGDUG 0HWKRGV 7KH VXOIXULF DFLG ZDV VWDQGDUGL]HG XVLQJ VWDQGDUG 1 VRGLXP FDUERQDWH DOVR DV GHVFULEHG LQ 6WDQGDUG 0HWKRGV +DUGQHVV 7RWDO DQG FDOFLXP KDUGQHVV ZHUH GHWHUPLQHG E\ WLWUDn WLQJ ZLWK FDUHIXOO\ VWDQGDUGL]HG ('7$ IROORZLQJ H[DFWO\ WKH

PAGE 62

SURFHGXUHV DV GHVFULEHG LQ 6WDQGDUG 0HWKRGV 0DQ\ GHWHUPLn QDWLRQV ZHUH FKHFNHG E\ DWRPLF DEVRUSWLRQ S+ 0HDVXUHPHQW $OO S+ PHDVXUHPHQWV ZHUH PDGH XVLQJ D &RUQLQJ 0RGHO S+ 0HWHUnn ZLWK D &RUQLQJ &RPELQDWLRQ JODVV DQG $J$J&O HOHFWURGH 7KH S+ PHWHU ZDV FDOLEUDWHG GDLO\ XVLQJ VROXWLRQV SUHSDUHG IURP FRQFHQWUDWHG VWDQGDUG EXIIHU VROXWLRQV SXUn FKDVHG IURP : + &XUWLQ DQG &RPSDQ\ -DU 7HEW 3URFHGXUHV 7KH MDU WHVW SURFHGXUHV ZHUH YHU\ VLPLODU IRU WKH QDWXUDO DQG V\QWKHWLF ZDWHUV DQG WKH GLVFXVVLRQ ZLOO EH DSn SOLFDEOH WR ERWK VHULHV 7KH SURFHGXUH RXWOLQHG ZLOO IROORZ FKURQRORJLFDO RUGHU ZLWK WKH GLIIHUHQFHV EHWZHHQ WKH VHULHV GLVFXVVHG LQ WKH RUGHU LQ ZKLFK WKH\ RFFXU ,Q HYHU\ LQn VWDQFH ZKHUH PDJQHVLXP LV XVHG LW LV DGGHG LQ WKH WULn K\GUDWH IRUP 0J&2\+ ,Q WKLV WH[W DQG WDEOHV LW KDV EHHQ UHIHUUHG WR DV PDJQHVLXP FDUERQDWH RU 0J&2A 3UHOLPLQDU\ 'HWHUPLQDWLRQV &KHPLFDO DQG SK\VLFDO DQDO\VHV ZHUH SHUIRUPHG RQ HDFK QDWXUDO ZDWHU SULRU WR MDU WHVWLQJ 7KHVH WHVWV LQFOXGHG S+ FRORU WXUELGLW\ DONDOLQLW\ KDUGQHVV DQG PDJQHVLXP $ VDPSOH RI HDFK QDWXUDO ZDWHU ZDV ILOWHUHG WKURXJK 1R nn&RUQLQJ *ODVV :RUNV 3KLODGHOSKLD 3HQQV\OYDQLD

PAGE 63

:KDWPDQ ILOWHU DFLGLILHG WR DSSUR[LPDWHO\ S+ ZLWK FRQFHQn WUDWHG +& DQG VWRUHG LQ D JODVV ERWWOH IRU DQDO\VLV E\ DWRPLF DEVRUSWLRQ IRU PDJQHVLXP DQG LURQ 7KH FRDJXODQW GRVDJHV ZHUH FKRVHQ WR JLYH XQGHUWUHDWn PHQW RI WKH ZDWHU DW WKH ORZHU GRVDJHV DQG RYHUWUHDWPHQW DW WKH KLJKHU GRVDJHV %DVHG RQ SUHYLRXV H[SHULHQFH WKLV UDQJH LQ FKHPLFDO GRVDJHV FRXOG XVXDOO\ EH GHWHUPLQHG IURP WKH UHVXOWV RI WKH FKHPLFDO DQG SK\VLFDO DQDO\VHV )RU V\QWKHn WLF ZDWHUV WKHVH SDUDPHWHUV ZHUH RI FRXUVH FKRVHQ IRU HDFK MDU WHVW )RU ERWK WKH TXDQWLW\ RI ZDWHU WR WRWDO OLWHU DIWHU WKH DGGLWLRQ RI DOO GRVDJHV ZDV FDOFXODWHG DQG DGGHG WR HDFK MDU 'HWDLOV RI -DU 7HVW 3URFHGXUH )RU VWXGLHV ZKHUH WKH PDJQHVLXP FDUERQDWH ZDV DGGHG DV D VOXUU\ DW OHDVW WZR PLQXWHV RI PL[LQJ DW 530 ZDV SURYLGHG DIWHU WKH VOXUU\ DGGLWLRQ 7KH OLPH VOXUULHV ZHUH WKHQ DGGHG WR WKH MDUV 7KH LQLWLDO DGGLWLRQ UHTXLUHG DSSUR[LPDWHO\ RQH PLQXWH ZLWK WZR DGGLWLRQDO PLQXWHV QHHGHG WR ULQVH WKH VL[ EHDNHUV LQ RUGHU WR FRPSOHWH WKH TXDQWLWDn WLYH WUDQVIHU RI WKH OLPH VOXUU\ :KHQ IORFFXODQW DLGV ZHUH XVHG WKH\ ZHUH DGGHG DSSUR[LPDWHO\ WKUHH PLQXWHV DIWHU WKH OLPH DGGLWLRQ ,QFUHPHQWDO DGGLWLRQ RI VWDUFK ZDV HYDOXDWHG XVLQJ VL[ GRVDJHV RQH PLQXWH DSDUW 7KUHH ZHUH DGGHG GXUn LQJ UDSLG PL[ DQG WKUHH GXULQJ WKH IORFFXODWLRQ SHULRG

PAGE 64

6DPSOHV IRU HOHFWURSKRUHWLF PRELOLW\ GHWHUPLQDWLRQV ZHUH WDNHQ GXULQJ UDSLG PL[LQJ DSSUR[LPDWHO\ RQH PLQXWH DIWHU IORFFXODQW DLG DGGLWLRQ RU DSSUR[LPDWHO\ WKUHH PLQXWHV DIWHU OLPH DGGLWLRQ ZKHQ QR IORFFXODQW DLG ZDV XVHG 7KH PL[LQJ VSHHG ZDV WKHQ VORZHG WR WR 530 DQG PDLQWDLQHG IRU PLQXWHV $IWHU YLVXDO REVHUYDWLRQV RI WKH IORH FKDUDFWHULVWLFV PO VDPSOHV ZHUH FROOHFWHG DQG ILOWHUHG WKURXJK :KDWPDQ 1R ILOWHU SDSHU IRU LPPHGLDWH GHWHUPLQDn WLRQV RI DONDOLQLW\ $IWHU WKH IORFFXODWLRQ SHULRG PL[LQJ ZDV VWRSSHG DQG WKH MDUV DOORZHG WR VHWWOH IRU WZHQW\ PLQXWHV $W WKDW WLPH VDPSOHV RI WKH VXSHUQDWDQW ZHUH WDNHQ IRU FRORU DQG WXUELn GLW\ DQDO\VLV S+ GHWHUPLQDWLRQV ZHUH WKHQ PDGH RQ DOO MDUV DQG WKH ZDWHU LQ VHOHFWHG MDUV ZDV VWDELOL]HG ILOWHUHG DQG DQDO\]HG 7KH VWXGLHV XVLQJ DOXP ZHUH SHUIRUPHG LQ D VLPLODU PDQQHU )RU VHYHUDO YHU\ ORZ DONDOLQLW\ ZDWHUV SUHOLPH ZDV DGGHG ILUVW XVLQJ £ VDWXUDWHG FDOFLXP K\GUR[LGH VROXWLRQ WR LQFUHDVH WKH WRWDO DONDOLQLW\ RI WKH ZDWHU (OHFWURSKRUHWLF PRELOLWLHV ZHUH QRW GHWHUPLQHG RQ WKHVH ZDWHUV 5HFRYHU\ 6WXGLHV 7KH UHFRYHU\ RI PDJQHVLXP IURP WKH VOXGJHV SURGXFHG LQ FRDJXODWLQJ ERWK V\QWKHWLF DQG QDWXUDO UDWHUV ZDV HYDOn XDWHG 7KH V\QWKHWLF ZDWHUV ZHUH SUHSDUHG WR JLYH D UDQJH LQ RUJDQLF FRORU RI IURP WR DQG D PRQWPRULOORQLWH WXUELGLW\ UDQJH RI IURP WR &RDJXODWLRQ ZDV FDUULHG

PAGE 65

RXW LQ D IRUW\OLWHU 3\UH[ MDU XVLQJ D VPDOO /LJKWQLQJ PL[HU ZLWK D UKHRVWDW WR FRQWURO WKH PL[LQJ 7KH TXDQWLW\ RI ZDWHU WR WRWDO OLWHUV DIWHU WKH DGGLWLRQ RI DOO GRVDJHV ZDV DGGHG WR WKH MDU 7KH VDOW VROXWLRQV ZHUH WKHQ DGGHG XVLQJ WKH FRQFHQWUDWHG VWRFN VROXWLRQV WR UHGXFH WKH YROXPHV DGGHG $V EHIRUH FRDJXODQW GRVDJHV ZHUH HVWLPDWHG IURP SUHn YLRXV MDU WHVWV 7KH PDJQHVLXP FDUERQDWH ZDV YLJRURXVO\ VOXUULHG DQG TXDQWLWDWLYHO\ DGGHG WR WKH UDSLGO\ PL[HG ZDWHU $IWHU DSSUR[LPDWHO\ WKUHH PLQXWHV WKH OLPH VOXUU\ ZDV DGGHG )LYH PLQXWHV DIWHU WKH OLPH DGGLWLRQ WKH DOXP ZDV DGGHG DQG WKH UDSLG PL[LQJ FRQWLQXHG IRU WZR DGGLWLRQDO PLQXWHV 7KH PL[LQJ ZDV WKHQ VORZHG DQG PDLQWDLQHG IRU WZHQW\ PLQXWHV DW D VSHHG ZKLFK ZRXOG NHHS WKH IORH LQ VXVSHQVLRQ 7KH IORH ZDV DOORZHG WR VHWWOH IRU D SHULRG EHWZHHQ VHYHUDO KRXUV DQG RYHUQLJKW LQ VRPH FDVHV 7KH FOHDU VXSHUn QDWDQW ZDV FDUHIXOO\ V\SKRQHG IURP WKH VOXGJH OD\HU DQG D FRPSRVLWH VDPSOH FROOHFWHG IRU DQDO\VHV 7KH VOXGJH ZDV WKHQ SRXUHG LQWR D OLWHU JUDGXDWHG F\OLQGHU WQG PHDVXUHG ,Q DOO EXW WKH ILUVW WZR H[SHULPHQWV WKH YROXPH ZDV WKHQ PDGH XS WR OLWHUV ZLWK GLVWLOOHG ZDWHU EHIRUH FDUERQDWLRQ r0L[LQJ (TXLSPHQW &RPSDQ\ 5RFKHVWHU 1HZ
PAGE 66

6OXGJH &DUERQDWLRQ &DUERQDWLRQ RI WKH VOXGJH ZDV SHUIRUPHG XVLQJ D F\OLQGHU RI VSHFLDOO\ SUHSDUHG JDV FRQWDLQLQJ b &2 DQG b DLU $ OLWHU JUDGXDWHG F\OLQGHU ZDV SODFHG RQ D ODUJH PDJQHWLF VWLUUHU IRU FRQWLQXRXV PL[LQJ GXULQJ FDUERQDWLRQ 7KH IORZ RI &2 ZDV UHJXODWHG XVLQJ D JDV SUHVVXUH UHJXODWRU VR WKDW ILQH ZHOO GLVSHUVHG EXEEOHV ZHUH SURGXFHG $ FDUn ERUXQGXP VWRQH GLIIXVHU ZDV XVHG WR GLVSHUVH WKH &2 LQWR WKH VOXGJH ZLWK QR DWWHPSW PDGH WR PHDVXUH WKH JDV IORZ UDWH )LIW\PLOOLOLWHU VDPSOHV ZHUH WDNHQ DW SUHGHWHUPLQHG WLPH LQWHUYDOV DQG ILOWHUHG WKURXJK :KDWPDQ 1R ILOWHU SDSHU S+ GHWHUPLQDWLRQV ZHUH PDGH RQ WKH ILOWUDWH PO VDPSOHV ZHUH WLWUDWHG IRUn DONDOLQLW\ DQG D GLOXWLRQ RI WKH UHPDLQGHU SUHSDUHG IRU FRORU DQDO\VLV $IWHU RUJDQLF FRORU KDG EHHQ GHWHUPLQHG WKH VDPSOHV ZHUH DFLGLILHG DQG VWRUHG IRU IXWXUH DQDO\VLV IRU PDJQHVLXP DQG FDOFLXP E\ DWRPLF DEVRUSWLRQ 7KH VOXGJH ZDV FDUERQDWHG LQ PRVW FDVHV XQWLO D S+ LQ WKH UDQJH RI WR ZDV UHDFKHG 7KH UHPDLQLQJ VOXGJH ZDV ILOWHUHG WKURXJK 1R :KDWPDQ SDSHU XVLQJ D YDFXXP IODVN DQG %XFKQHU IXQQHO 6HYHUDO ILOWHUDELOLW\ VWXGLHV ZHUH PDGH XVLQJ SRO\PHUV DQG FDOFLXP FDUERQDWH DV ILOWHU DLGV 7ZR JHQHUDO PHWKRGV RI HYDOXDWLRQ ZHUH HPSOR\HG GHWHUPLQDWLRQ RI WKH WLPH WR GHZDWHU PO RI WKH VOXGJH DQG GHWHUPLQDWLRQ RI WKH WRWDO YROXPH WKDW FRXOG EH ILOWHUHG EHIRUH FORJJLQJ RFFXUUHG

PAGE 67

6HSDUDQ $3&In ZDV XVHG LQ WKH SRO\PHU HYDOXDWLRQ ,QFUHPHQWDO DGGLWLRQ RI PJ RI WKH SRO\PHU IROORZHG E\ GHWHUPLQDWLRQ RI WKH WLPH IRU ILOWUDWLRQ RI PO RI WKH VOXGJH SURYLGHG GDWD XVHG WR GHWHUPLQH WKH HIIHFW RI WKH SRO\PHU RQ VOXGJH ILOWHUDELOLW\ 7KH ILOWUDWHV IURP VHYHUDO RI WKH UHFRYHU\ VWXGLHV ZHUH VWRUHG WR EH XVHG DV UHF\FOHG FRDJXODQW &RDJXODWLRQ 8VLQJ 5HFRYHUHG 0DJQHVLXP %LFDUERQDWH &RDJXODWLRQ XVLQJ ERWK WKH VWDQGDUG MDU WHVW DSSDn UDWXV DQG WKH OLWHU 3\UH[ MDU ZLWK WKH YDULDEOH VSHHG /LJKWQLQJ PL[HU ZDV HYDOXDWHG XVLQJ UHFRYHUHG PDJQHVLXP 7KH UHTXLUHG YROXPH RI UHFRYHUHG PDJQHVLXP ELFDUERQDWH WR JLYH WKH GHVLUHG FRDJXODQW GRVDJH ZDV DGGHG DQG WKH FRDJXn ODWLRQ WHVWV SHUIRUPHG DV GLVFXVVHG SUHYLRXVO\ 7KH FRDJXODWLRQ RI VHOHFWHG V\QWKHWLF DQG QDWXUDO ZDWHUV ZDV UHSHDWHG XVLQJ WKH VROXWLRQV RI PDJQHVLXP ELFDUn ERQDWH UHFRYHUHG DV GHVFULEHG DERYH DQG UHVXOWV nLLGHQWLFDO ZLWK WKRVH REWDLQHG ZLWK WKH RULJLQDO PDJQHVLXP FDUERQDWH ZHUH REWDLQHG 7KLV ZDV GRQH ZLWK MDU WHVWV DQG ZLWK UHFRYHUHG FRDJXODQW LQ WKH OLWHU YHVVHO r$ SURGXFW RI 'RZ &KHPLFDO &RPSDQ\ 0LGODQG 0LFKLJDQ

PAGE 68

&+$37(5 5(68/76 $1' ',6&866,21 &RDJXODQW 6WXGLHV RI 6\QWKHWLF :DWHUV (PDWKOLWH FOD\ WXUELGLW\ ZDV XVHG LQ WKH ILUVW VWXGLHV RI V\QWKHWLF ZDWHUV $Q H[SHULPHQW ZDV GHVLJQHG WR GHWHUPLQH WKH UHODWLRQVKLS EHWZHHQ WKH OHYHO RI WXUELn GLW\ DQGRU RUJDQLF FRORU SUHVHQW DQG WKH GRVDJH RI PDJQHn VLXP FDUERQDWH UHTXLUHG IRU VDWLVIDFWRU\ WUHDWPHQW RI WKH ZDWHU 7KH DONDOLQLW\ DQG KDUGQHVV ZHUH KHOG FRQVWDQW DW PJ DV &D&2A $Q DFFHSWDEOH WUHDWPHQW ZRXOG JLYH D VHWWOHG WXUELGLW\ OHVV WKDQ PJ DQG FRORU OHVV WKDQ PJ $ PLQLPXP RI VL[ MDUV ZHUH UHTXLUHG WR GHWHUPLQH WKH ORZHVW GRVDJH RI PDJQHVLXP FDUERQDWH IRU HDFK FRPELQDWLRQ RI FRORU DQG WXUELGLW\ 7DEOH VXPPDUL]HV WKH GDWD XVHG LQ WKH GHYHORSPHQW RI WKLV UHODWLRQVKLS IRU HPDWKOLWH WXUn ELGLW\ 7$%/( 0$*1(6,80 &$5%21$7( 5(48,5(' )25 &2$*8/$7,21 2) 25*$1,& &2/25 $1' (0$7+/,7( 0J& 785%,',7< &RORU 7XUELGLW\

PAGE 69

$ VWHSZLVH OLQHDU UHJUHVVLRQ HTXDWLRQ ZDV FDOFXODWHG XVLQJ D %0'5 &RPSXWHU /LEUDU\ SURJUDP 7KH JHQHUDO IRUP RI WKH UHJUHVVLRQ HTXDWLRQ ZDV < $ EM;M E; ZKHUH < PDJQHVLXP FDUERQDWH GRVH $ FRQVWDQW ;_ WKH YDULDEOH HLWKHU FRORU RU WXUELGLW\ ZKLFK LV PRVW VLJQLILFDQW LQ UHGXFLQJ WKH WRWDO VXPV RI VTXDUHV ; WKH YDULDEOH UHPDLQLQJ EA UHJUHVVLRQ FRHIILFLHQW IRU ;A E UHJUHVVLRQ FRHIILFLHQW IRU ; 7KH HTXDWLRQ UHVXOWLQJ LV < FRORU WXUELGLW\ )RU WKH GDWD VKRZQ FRORU DQG WXUELGLW\ DFFRXQW IRU b RI WKH YDULDWLRQV LQ WKH UHTXLUHG PDJQHVLXP GRVDJH ZLWK D KLJKO\ VLJQLILFDQW ) YDOXH RI r DQG VWDQGDUG HUURU RI WKH HVWLPDWH RI /LPH DORQJ ZLWK D IORFFXODQW VWDUFK ZDV IRXQG WR VDWLVIDFWRULO\ IORFFXODWH WKH HPDWKOLWH WXUELGLW\ DV VKRZQ LQ 7DEOH 3RVVLEO\ WKH ILQH SDUWLFOHV RI WXUELGLW\ VHUYHG DV D QXFLHLL IRU FDOFLXP FDUERQDWH SUHFLSLWDWLRQ ZKLFK ZDV LQ WXUQ DJJORPHUDWHG E\ WKH VWDUFK WR D VL]H ZKLFK ZRXOG VHWWOH 0DJQHVLXP FDUERQDWHnV HIIHFWLYHQHVV LQ FRORU UHPRYDO LV GHPRQVWUDWHG LQ 7DEOH 7KH FRORU SUHVHQW VHHPHG WR LPSURYH

PAGE 70

7$%/( /,0( $1' 0J& &2$*8/$7,21 2) $ )8//(5n6 ($57+ 785%,',7< 6<17+(7,& :$7(5 -DU 1R 'RVDJH LQ SSP 3+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ f 6WDE WR S+ &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D&2A &2 2 R &?@ X R +D R &2 R X FR R &&2 R R &2 R D & 1& 7 L &KDUDFWHULVWLFV RI UDZ ZDWHU $ONDOLQLW\ DV &D&2A 7RWDO +DUGQHVV DV &D&&A S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ &RPPHQWV (PDWK8W3 &OD\

PAGE 71

7$%/( 0J&2R &2$*8/$7,21 2) $ +,*+/< &2/25(' )8//(5n6 ($57+ 785%,',7< 6<17+(7,& :$7(5 -DU 1R 'RVDJH LQ SSQ S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ ‘ 6WDE WR 3+ &RORU $ONDOLQLW\ +DUGQHVV D FR f+ 2 &2 R FG & 2 FG FR D FG &2 2 D R RJ rf§Q FG ; R R nf§Z +D ; 2 &2 R R FR R R '2 UR R R FR R R ; & 1& 7 r &KDUDFWHULVWLFV RI UDZ ZDWHU &RPPHQWV $ONDOLQLW\ DV &D&2A 7RWDO +DUGQHVV DV &D&&A S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ )XOOHUfV (DUWK

PAGE 72

WKH VL]H RI WKH IORH DV ZHOO DV LWV VHWWOHDELOLW\ 1R DWWHPSW ZDV PDGH WR PHDVXUH WKH PDJQHVLXP LQ VROXWLRQ DIWHU FRDJXODWLRQ LQ WKHVH HDUO\ H[SHULPHQWV ,W ZDV IRXQG KRZn HYHU WKDW JRRG IORH IRUPDWLRQ WRRN SODFH DW D S+ DERYH WKHUHIRUH WKH S+ RI FRDJXODWLRQ ZDV PDLQWDLQHG IURP WR 7KH H[SHULPHQWV ZLWK UQRQWPRULOORQLWH FOD\ WXUELGLW\ ZHUH GHVLJQHG LQ D VLPLODU PDQQHU WR GHWHUPLQH WKH HIIHFW RI FRORU DQG WXUELGLW\ RQ WKH FRDJXODQW GRVDJH 7KH GDWD XVHG WR GHYHORS WKLV UHODWLRQVKLS DUH VKRZQ LQ 7DEOH EHORZ 7$%/( 0$*1(6,80 &$5%21$7( '26$*( 5(48,5(' 72 &2$*8/$7( 25*$1,& &2/25 $1' 0217025,//21,7( 785%,',7< 0U& &RORU 7XUELGLW\ 7KH HTXDWLRQ GHWHUPLQHG LV < FRORU WXUELGLW\ &RORU DQG WXUELGLW\ DFFRXQW IRU b RI WKH YDULDWLRQ LQ UHTXLUHG PDJQHVLXP GRVDJH ZLWK D KLJKO\ VLJQLILFDQW ) YDOXH RI DQG VWDQGDUG HUURU RI WKH HVWLPDWH RI $V ZLWK WKH HPDWKOLWH WXUELGLW\ OLPH DLGHG E\ D IORFFXODQW ZDV VDWLVIDFWRU\ LQ UHPRYLQJ UQRQWPRULOORQLWH FOD\ WXUELGLW\ ,Q 7DEOH WKH HIIHFWLYHQHVV RI 0J&2A LQ FRORU DQG PRQW PRULOORQLWH FOD\ WXUELGLW\ UHPRYDO LV VKRZQ

PAGE 73

7$%/( &2$*8/$7,21 23n $ +,*+/< &2/25(' 6<17+(7,& :$7(5 :,7+ 0J& -DU 1R 'RVDJH LQ SSUU S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ R &2 3 P &RORU $ONDOLQLW\ +DUGQHVV t FR f+ 2 9f R 8 WWL &&Y" 9f e Qf &2 2 6 2 &0 f§? X R $OXP f 2 &2 R R &2 2 X m &2 R R &2 R R ; & 1& 7 e R &2  R &KDUDFWHULVWLFV RI UDZ ZDWHU $ONDOLQLW\ DV &D&2A f 7RWDO +DUGQHVV DV &D& S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ &RPPHQWV 0RQWPRULOORQLWH

PAGE 74

7KH XVH RI VWDUFK DV D IORFFXODQW IRU OLPH FRDJXODn WLRQ ZDV VWXGLHG IRU ERWK FOD\V )LIWHHQ H[SHULPHQWV ZHUH FRQGXFWHG ZKHUH DOO V\VWHP SDUDPHWHUV EXW VWDUFK ZHUH NHSW FRQVWDQW 6WDUFK GRVDJHV RI WR PJ ZHUH IRXQG WR UHGXFH WKH ILQDO WXUELGLW\ LQ H[SHULPHQWV WR KDYH QR HIIHFW LQ DQG WR LQFUHDVH WKH ILQDO WXUELGLW\ LQ 7KUHH H[SHULPHQWV ZHUH SHUIRUPHG ZLWK DOO SDUDPHWHUV EXW WKH PHWKRG RI VWDUFK DGGLWLRQ NHSW FRQVWDQW 7KH VWDUFK ZDV DGGHG DV D VLQJOH GRVH WR RQH MDU DQG LQ VL[ LQFUHPHQWV WR WKH VHFRQG MDU DV GLVFXVVHG LQ D SUHYLRXV FKDSWHU 7KH LQFUHPHQWDO DGGLWLRQ LQFUHDVHG WKH HIILFLHQF\ LQ RQH WHVW KDG QR HIIHFW LQ DQRWKHU DQG GHFUHDVHG WKH HIILFLHQF\ LQ WKH WKLUG 'UHZ )ORH D FDWLRQLF VWDUFK ZDV XVHG XQn VXFFHVVIXOO\ LQ RQH H[SHULPHQW 6WXG\ RI 1DWXUDO :DWHUV 7KH ILUVW QDWXUDO ZDWHUV VWXGLHG ZHUH REWDLQHG IURP WKH 7DODSRRVD 5LYHU D VRXUFH RI ZDWHU IRU 0RQWJRPHU\ $ODEDPD 6HYHQ VHWV RI MDU WHVWV ZHUH SHUIRUPHG RQ WKLV ZDWHU ZLWK WKH UHVXOWV IURP VHOHFWHG MDU WHVWV VKRZQ LQ 7DEOH &RORU DQG WXUELGLW\ UHPRYDO ZDV FRPSDUDEOH WR DOXP WUHDWPHQW 7KHAKDUGQHVV DQG DONDOLQLW\ RI WKH PDJQHVLXP FDUERQDWH WUHDWHG ZDWHU PJ DV &D&2A ZRXOG DOORZ S+ DGMXVWPHQW IRU FRUURVLRQ FRQWURO 7KLV ZRXOG QRW EH WKH FDVH IRU WKH DOXP WUHDWPHQW DV WKH DONDOLQLW\ DQG KDUGQHVV ZHUH DQG PJ UHVSHFWLYHO\ 7KLV KDV OHG WR VHULRXV FRUURVLRQ SUREOHPV :DWHU ZDV DOVR REWDLQHG IURP WKH 0RELOH 5LYHU QHDU 0RELOH $ODEDPD DQG HYDOXDWHG LQ D VLPLODU PDQQHU ZLWK WKH

PAGE 75

7$%/( 0J& $1' $/80 &2$*8/$7,21 2) 0217*20(5< $/$%$0$ :$7(5 -DU 1R 'RVDJH LQ SSP S+ &RORU 7XUELGLW\ 0RELOLW\ L $ONDOLQLW\ ‘ 6WDE WR 3+ &RORU $ONDOLQLW\ +DUGQHVV H FR f+ 2 &2 &' &IO F X E2 FG Z 6 UG &2 2 6 &VM UG c8 X $OXP &2 2 2 &2 2 X ; &2 &2 2 2 ; & 1& 7 f &KDUDFWHULVWLFV RI UDZ ZDWHU &RPPHQWV $ONDOLQLW\ DV &D&2A f 7RWDO +DUGQHVV DV &D&2A S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 1DWXUDO

PAGE 76

7$%/( 0J& $1' $/80 &2$*8/$7,21 2) 02%,/( 5,9(5 :$7(5 02%,/( $/$%$0$ -DU 1R 'RVDJH LQ SSP S+ X R f§ R &7XUELGLW\ 0RELOLW\ $ONDOLQLW\ ‘ 6WDE WR S+ &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D&2A FQ E2 2 D FM &1 ‘f§? &R nZn $OXP 3 R &2 R &&2 R &SA &2 R R UR R R (& & 1& 7 n &KDUDFWHULVWLFV RI UDZ ZDWHU $ONDOLQLW\ DV &D&2M 7RWDO +DUGQHVV DV &D&2A S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 1DWXUDO &RPPHQWV

PAGE 77

VHOHFWHG UHVXOWV IRU ERWK WUHDWPHQW PHWKRGV VKRZQ LQ 7DEOH ,W ZDV IRXQG WKDW YHU\ VPDOO GRVDJHV RI DOXP ZHUH YHU\ HIIHFWLYH DV D IORFFXODQW DLG ,Q VHYHQ VHWV RI MDU WHVWV ZLWK DOXP DGGLWLRQ WKH RQO\ YDULDEOH D PJ GRVDJH RI DOXP JDYH DQ DYHUDJH RI b VHWWOHG FRORU UHGXFWLRQ DQG b WXUELGLW\ UHGXFWLRQ DV VKRZQ LQ WKH 7DEOH 7DEOH ())(&7 2) $/80 $6 $ )/2&&8/$17 $,' ,1 &2/25 $1' 785%,',7< &2$*8/$7,21 :,7+ 0$*1(6,80 &$5%21$7( 6HWWOHG 6HWWOHG 0RQWJRPHU\ 0J&2R HK $OXP &RORU 7XUELGLW\ f 0RELOH f $OXP DGGLWLRQ LQFUHDVHG r WKH VL]H DQG UDWH RI IORH JURZWK DQG PDGH WKH HOHFWURSKRUHWL F PRELOLW\ OHVV QHJDWLYH $ VLJQLIL FDQW OLQHDU UHODWLRQVKLS EHWZHHQ PRELOLW\ DQG WKH FRORU RU WXUELGLW\ UHGXFWLRQ KDV EHHQ IRXQG IRU PRVW RI WKH ZDWHUV DV ZLOO EH GLVFXVVHG ODWHU

PAGE 78

,Q WKH VWXG\ RI ZDWHUV IURP FLWLHV WKURXJKRXW WKH FRXQWU\ LW ZDV IRXQG WKDW PDQ\ RI WKH ZDWHUV FRQWDLQHG D FRQVLGHUDEOH DPRXQW RI PDJQHVLXP )RU WKHVH ZDWHUV OLPH DGGLWLRQ SUHFLSLWDWHG WKH PDJQHVLXP SUHVHQW UHTXLULQJ QR DGGLWLRQDO PDJQHVLXP FDUERQDWH ,Q 7DEOHV WKURXJK VHOHFWHG GDWD IURP WKHVH VWXGLHV DUH SUHVHQWHG ,Q HYHU\ FDVH PDJQHVLXP FDUERQDWH JLYHV FRORU DQG WXUELGLW\ UHGXFn WLRQV FRPSDUDEOH WR DOXP WUHDWPHQW 7KH IORH IRUPDWLRQ ZLWK PDJQHVLXP FDUERQDWH RFFXUV DW D IDVWHU UDWH WKH IORH IRUPHG LV ODUJHU LQ VL]H DQG VHWWOLQJ LV PRUH UDSLG GXH WR WKH JUHDWHU IORH GHQVLW\ )RU WKH ZDWHUV RI KLJK DONDn OLQLW\ DQG KDUGQHVV DFWLYDWHG VLOLFD ZDV IRXQG WR EH WKH PRVW HIIHFWLYH IORFFXODQW DLG 0DJQHVLXP SUHVHQW LQ WKH QDWXUDO ZDWHUV ZDV LQ PRVW FDVHV LQ WKH QRQFDUERQDWH IRUP 5HPRYDO RI PDJQHVLXP DV 0J+f E\ OLPH DGGLWLRQ ZLOO QRW GHFUHDVH WKH WRWDO KDUGn QHVV RI WKH VWDELOL]HG ZDWHU PHUHO\ VXEVWLWXWHV FDOFLXP KDUGQHVV IRU PDJQHVLXP KDUGQHVV 7KLV FDQ EH DGYDQWDJHRXV LQ WKH FDVH RI KLJK PDJQHVLXP ZDWHUV ZKHUH WKH IRUPDWLRQ RI PDJQHVLXP VLOLFDWH VFDOHV LQ KRW ZDWHU KHDWHUV LV D SUREn OHP 7KH UDZ ZDWHU DQDO\VHV WRJHWKHU ZLWK WKH FKHPLFDO FKDUDFWHULVWLFV RI WKH ZDWHUV IROORZLQJ ERWK DOXP DQG PDJn QHVLXP FDUERQDWH WUHDWPHQW DUH JLYHQ IRU WKH ZDWHUV VWXGLHG LQ 7DEOH )RU WKH ZDWHUV VWXGLHG WUHDWPHQW ZLWK PDJQHVLXP FDUERQDWH JDYH D VWDELOL]HG ZDWHU ZLWK DONDOLQL WLHV UDQJLQJ IURP WR PJ DV FRPSDUHG ZLWK WKRVH

PAGE 79

7$%/( &2$*8/$7,21 2) $7/$17$ *(25*,$ :$7(5 :,7+ 0J& $1' $/80 -DU 1R 'RVDJH LQ SSP S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ 2 [! 3G FR D &2 &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D&2A &2 R 6 X &0 Zf1 FWI SG 8 2 nZn $OXP 3G 2 &2 R X FR 2 X 3G &2 R R UR 2 X & 1& 7 I & & &KDUDFWHULVWLFV RI UDZ ZDWHU $ONDOLQLW\ DV &D&2A 7RWDO +DUGQHVV DV &D&2M S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 1DWXUDO 0DJQHVLXP DV &D&2A &RPPHQWV 5DZ ZDWHU PRELOLW\

PAGE 80

7$%/( 0J& $1' $/80 &2$*8/$7,21 2) %$/7,025( 0$5
PAGE 81

7$%/( /,0( $1' $/80 &2$*8/$7,21 2) %,50,1*+$0 $/$%$0$ :$7(5 -DU 1R 'RVDJH LQ SSP S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ 2 U$ &œ 3! ‘X &2 &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D&2A &1Zf§1 FWI 2 2 ‘f§Z $OXP +D 2 &2 R R FR R R &2 R R UR 2 R & 1& 7 /Q &2 R? Y2 &KDUDFWHULVWLFV RI UDZ ZDWHU &RPPHQWV $ONDOLQLW\ DV &D&2A 7RWDO +DUGQHVV DV &D&2A 5DZ ZDWHU PRELOLW\ f§ S+ 2UJDQLF &RORU 7XUELGLW\ ,4 7\SH &OD\ 1DWXUDO 0DJQHVLXP DV &D&2A

PAGE 82

7$%/( 0J& /,0( $1' $/80 &2$*8/$7,21 2) &+$77$122*$ 7(11(66(( :$7(5 -DU 1R 'RVDJH LQ SSP 3+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ f 6WDE WR 3+ &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D&2A &2 2 6 &1 X R $OXP R &2 R R &2 2 &; &2 R R &2 R &; & 1& 7 &1 G L &KDUDFWHULVWLFV RI UDZ ZDWHU $ONDOLQLW\ DV &D&2A 7RWDO +DUGQHVV DV &D&2A S+ =2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 1DWXUDO 0DJQHVLXP DV &D& &RPPHQWV 0RELOLW\ RI UDZ ZDWHU

PAGE 83

7$%/( &2$*8/$7,21 2) &/(9(/$1' 2+,2 :$7(5 :,7+ /,0( $1' $/80 -DU 1R 'RVDJH LQ SSP S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ ‘ 6WDE WR S+ &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D& &Y FG 6n &R Af§n f+ &0 FR 2 ,, $OXP D R &2 R R &2 R R 3& &2 R R U! R X & 1& 7 ‘ LR &KDUDFWHULVWLFV RI UDZ ZDWHU &RPPHQWV $ONDOLQLW\ DV &D&2A n 7RWDO +DUGQHVV DV &D&2A S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 1DWXUDO 0DJQHVLXP DV &D&2A

PAGE 84

7$%/( &2$*8/$7,21 2) '(752,7 0,&+,*$1 :$7(5 %< 35(&,3,7$7,21 2) 0$*1(6,80 35(6(17 %< /O0( $'',7,21 -DU 1R 'RVDJH LQ SSP S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ ‘ 6 WDE WR 3+ &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D&2A &0 WL R R 9} $OXP ,, f+ &0 *2 2 ,, R &2 R &&2 R &c[c &2 R &UR 2 2 6& & 1& 7 &KDUDFWHULVWLFV RI UDZ ZDWHU &RPPHQWV f 1DWXUDO $ONDOLQLW\ DV &D& 7RWDO +DUGQHVV DV &D&2A 3+ B 2UJDQLF &RORU B 7XUELGLW\ B 7\SH &OD\ B 0DJQHVLXP DV &D&2A

PAGE 85

7$%/( &2$*8/$7,21 2) +81769,//( $/$%$0$ :$7(5 :,7+ 0J& $1' :,7+ $/80 -DU 1R 'RVDJH LQ SSLU S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ 2 X e Q &8 3/ X &2 &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D&2A &DOFLXP DV &D&2A FQ R 6 X 2Q AV FG SUM X R $OXP R &2 R R P R R m &2 R R I2 R R & 1& 7 X! r I &KDUDFWHULVWLFV RI UDZ ZDWHU &RDUWDQWH $ONDOLQLW\ DV &D&&! 7RWDO +DUGQHVV DV &D&2A r+DO DW PJ S+ ? 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 1DWXUDO

PAGE 86

7$%/( 0J& $1' $/80 &2$*8/$7,21 2) -$&.621 0,66,66,33, :$7(5 -DU 1R 'RVDJH LQ SSP S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ R X R D ‘8 FR &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D&2A R X &1 r1 X R 6 Lf§ G UW R FR R &&2 R FM 8 &2 R R &2 2 && 1& 7 R! Y2 UR LL &KDUDFWHULVWLFV RI UDZ ZDWHU &RPPHQWV $ONDOLQLW\ DV &D& 7RWDO +DUGQHVV DV &D&&! S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 1DWXUDO 0DJQHVLXP DV &D&2A

PAGE 87

7$%/( 0J& $1' $/80 &2$*8/$7,21 2) /$1(77 $/$%$0$ :$7(5 -DU 1R 'RVDJH LQ SSP 3+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ ‘ 6WDE WR 3+ &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D&2A &2 R 6 X &0 IIL &2 Yf§r $OXP R &2 R R &2 R X (& &2 R R &2 R R & 1& 7 aaM 8 &KDUDFWHULVWLFV RI UDZ ZDWHU $ONDOLQLW\ DV &D&2A 7RWDO +DUGQHVV DV &D&2A S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 1DWXUDO &RPPHQWV

PAGE 88

7$%/( /,0( $1' $/80 &2$*8/$7,21 2) /28,69,//( .(178&.< :$7(5 -DU 1R 'RVDJH LQ SSP S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ ‘ 6WDE WR S+ &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D&2A &1 R D R $OXP ,, f+ &Y&2 2 ,, 2 &2 R X FR R &D &2 R R &2 2 R D & 1& 7 E f. &KDUDFWHULVWLFV RI UDZ ZDWHU $ONDOLQLW\ DV &D&2A 7RWDO +DUGQHVV DV &D&&A S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 1DWXUDO 0DJQHVLXP DV &D&2A &RPPHQWV 0RELOLW\ RI UDZ ZDWHU

PAGE 89

7$%/( 0J& /,0( $1' $/80 &2$*8/$7,21 2) 1$6+9,//( 7(11(66(( :$7(5 -DU 1R 'RVDJH LQ SSP S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ 6WDE WR S+ &RORU $ONDOLQLW\ +DUGQHVV % &2 f+ 2 Z R f &2 H X & f 6 FR 6WDEDOL]HG 7XUELGLW\ FU\ 2 6 X &0 F &R $OXP ; R &2 2 X A R R FR R FM &2 R R ; & 1& 7 / / &KDUDFWHULVWLFV RI UDZ ZDWHU &RPPHQWV 1DWXUDO $ONDOLQLW\ DV &D&2A 7RWDO +DUXQHVV DV &D& 3+ B 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 0DJQHVLXP DV &D&2A

PAGE 90

7$%/( 0J& $1' $/80 &2$*8/$7,21 2) 23(/,.$ $/$%$0$ :$7(5 -DU 1R 'RVDJH LQ SSP S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ ‘ 6WDE WR S+ &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D&2A P WR R J R &1 F ; R R 9 $OXP R &2 2 8 &2 R R ; &2 R R &2 2 X ; & 1& 7 / &KDUDFWHULVWLFV RI UDZ ZDWHU $ONDOLQLW\ DV &D&2A 7RWDO +DUGQHVV DV &D&2A S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 1DWXUDO &RPPHQWV

PAGE 91

7$%/( /,0( 0J& $1' $/80 &2$*8/$7,21 2) 3+,/$'(/3+,$ 3(116
PAGE 92

7$%/( &2$*8/$7,21 2) 5,&+021' 9,5*,1,$ :$7(5 :,7+ 0J&4 $1' $/80 -DU 1R 'RVDJH LQ SSP 3+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ R } ; ; &' ; X &2 &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D&2A &2 2 D X &D 2+f $OXP 2 &2 R R &2 R X &2 R R &2 R &; & 1& 7 &KDUDFWHULVWLFV RI UDZ ZDWHU $ONDOLQLW\ DV &D&2A 7RWDO +DUGQHVV DV &D&&A S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 1DWXUDO 0DJQHVLXP DV &D&2A &RPPHQWV

PAGE 93

7$%/( 0J& $1' $/80 &2$*8/$7,21 2) 786&$/226$ $/$%$0$ :$7(5 -DU 1R 'RVDJH LQ SSP S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ R r FG 3/ f8 &2 &RORU $ONDOLQLW\ +DUGQHVV FR f+ 2 &' 2 &' &G X &G &' e FG &2 R &1 rf1 FG L8n 8 2 $OXP R UR 2 &2 I R R ; &2 R &&2 R R FF & 1& 7 f§ f§ ,' &KDUDFWHULVWLFV RI UDZ ZDWHU &RPPHQWV $ONDOLQLW\ DV &D&2A 7RWDO +DUGQHVV DV &D& 4 S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 1DWXUDO

PAGE 94

7$%/( 0J& /,0( $1' $/80 &2$*8/$7,21 2) :$6+,1*721 '& :$7(5 -DU 1R 'RVDJH LQ SSP S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ 6WDE WR 3+ &RORU $ONDOLQLW\ +DUGQHVV I2 f+ 2 :O FB! Df FWM H R 0 UW WR 6 mD UR E2 2 D R &0 UW WUM &-! 2 nZn $OXP DV R &2 R X &2 R R 36 P R FB! UR 2 8 DV & 1& 7 r r &KDUDFWHULVWLFV RI UDZ ZDWHU $ONDOLQLW\ DV &D&2A 7RWDO +DUGQHVV DV &D&2A S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ 1DWXUDO 0DJQHVLXP DV &D&2A &RPPHQWV 0RELOLW\ RI UDZ ZDWHU r PJ +DO

PAGE 95

7$%/( &203$5,621 2) 5$: $1' 75($7(' &+(0,&$/ &+$5$&7(5,67,&6 )25 1$785$/ :$7(56 &,7< 5$: :$7(5 &+$5$&7(5,67,&6 0J& 75($70(17 $/80 75($70(17 7XUELGLW\ &RORU 7RWDO $ONDOLQLW\ 7RWDO ODUGQHVV 0DJQHVn LXP DV &D&2T 7RWDO $ONDOLQLW\ 7RWDO +DUGQHVV 7RWDO $ONDOLQLW\ 7RWDO +DUGQHVV $WODQWD *D n 77f 8 %DOWLPRUH 0G %LUPLQJKDP $OD Df &OHYHODQG 2KLR 'HWURLW 0LFK +XQWVYLOOH $ODEf f -DFNVRQ 0LVV /DQHWW $OD Ff /RXLVYLOOH .\ 0RQWJRPHU\ $OD 1DVKYLOOH 7HQQ 2SHOLND $OD 3KLODGHOSKLD 3D 5LFKPRQG 9D 7XVFDORRVD $OD :DVKLQJWRQ & Df 5HTXHVWHG WR EH GHOHWHG IURP SXEOLFDWLRQ Ef 7HQQHVVHH 5LYHU XVHG IRU VRXUFH RU UDZ ZDWHU Ff &KDWWDKRRFKHH 5LYHU XVHG IRU VRXUFH RI UDZ ZDWHU

PAGE 96

UHVXOWLQJ IURP DOXP WUHDWPHQW ZKLFK UDQJHG IURP WR PJ 9DOXHV IRU VWDELOL]HG KDUGQHVV UDQJHG IURP WR PJ DV FRPSDUHG ZLWK WR PJ IRU DOXP WUHDWPHQW 6L[ RI WKH ZDWHUV FRDJXODWHG ZLWK DOXP DUH WRR ORZ LQ KDUGn QHVV DQG DONDOLQLW\ WR XVH S+ DGMXVWPHQW HIIHFWLYHO\ IRU FRUURVLRQ FRQWURO ,Q DGGLWLRQ HLJKW ZDWHUV ZRXOG EHQHILW E\ WKH UHGXFWLRQ LQ WRWDO KDUGQHVV UHVXOWLQJ IURP XVLQJ PDJQHVLXP FDUERQDWH UDWKHU WKDQ DOXP 6ROXELOLW\ RI 0DJQHVLXP +\GUR[LGH 7KH VROXELOLW\ RI PDJQHVLXP K\GUR[LGH KDV EHHQ GHWHUn PLQHG E\ PDQ\ LQYHVWLJDWRUV ,Q WKLV VWXG\ LV ZDV LQFUHDVn LQJO\ HYLGHQW WKDW WKH PDJQHVLXP UHPDLQLQJ LQ VROXWLRQ DIWHU FRDJXODWLRQ ZDV PDQ\ WLPHV PRUH WKDQ ZRXOG EH SUHGLFWHG E\ WKHRU\ 7KHUH DUH VHYHUDO UHDVRQV IRU WKLV DSSDUHQW LQn FUHDVH LQ VROXELOLW\ DV GLVFXVVHG SUHYLRXVO\ ,Q WKH MDU WHVWV WKH WLPH DOORZHG IRU HTXLOLEULXP ZDV XVXDOO\ RQO\ RQH KRXU ,Q SODQW XVH IRXU WR VL[ KRXUV DUH QRUPDOO\ DOORZHG IRU SUHFLSLWDWLRQ ZKLFK VKRXOG GHFUHDVH WKH PDJQHVLXP VROXn ELOLW\ ,W LV WKH PDJQHVLXP K\GUR[LGH ZKLFK LV SUHFLSLWDWHG WKDW FDXVHV FROORLGDO GHVWDELOL]DWLRQ DQG RQO\ WKLV SRUWLRQ RI WKH PDJQHVLXP GRVDJH FDQ EH UHFRYHUHG DQG UHXVHG 7KH VROXELOLW\ RI PDJQHVLXP K\GUR[LGH XQGHU MDU WHVW FRQGLWLRQV YDULHG IRU HDFK RI WKH QDWXUDO ZDWHUV VWXGLHG ,W ZRXOG KDYH EHHQ GHVLUDEOH WR GHWHUPLQH WKLV VROXELOLW\ UHODWLRQVKLS IRU HDFK ZDWHU EXW EHFDXVH RI D ODFN RI VXIn ILFLHQW GDWD D FRPSRVLWH RI REVHUYDWLRQV RI PDJQHVLXP

PAGE 97

FRQFHQWUDWLRQV DW YDU\LQJ S+ YDOXHV IRU DOO RI WKH ZDWHUV VWXGLHG ZDV XVHG $ VLPSOH OLQHDU UHJUHVVLRQ DQDO\VLV EHWZHHQ ORJ PDJQHVLXP DQG S+ ZDV XVHG WR GHWHUPLQH WKH H[SHULPHQWDO 7KLV YDOXH ZDV IRXQG WR EH [ VS ZLWK D VWDQGDUG HUURU RI WKH HVWLPDWH HTXDO WR 7KH VROXELOLW\ UHODWLRQVKLS IRXQG LV VKRZQ LQ )LJXUH ZKHUH WKH PDJQHVLXP LV SORWWHG DV PDJQHVLXP FDUERQDWH WULK\GUDWH 7KLV FRPSRVLWH VROXELOLW\ UHODWLRQVKLS LV XVHG LQ GHWHUPLQLQJ UHFRYHU\ HIILFLHQFLHV DQG FRVW HVWLPDWHV IRU WKH QDWXUDO ZDWHUV VWXGLHG 'HWHUPLQDWLRQ RI &RQGLWLRQV IRU /RZHVW 7UHDWPHQW &RVW (DFK ZDWHU UHTXLUHV D VSHFLILF DPRXQW RI PDJQHVLXPn K\GUR[LGH IRU VDWLVIDFWRU\ WUHDWPHQW 7KH VROXELOLW\ UHn ODWLRQVKLS GHYHORSHG DOORZV FDOFXODWLRQ RI WKH DPRXQW RI PDJQHVLXP FDUERQDWH ZKLFK PXVW EH IHG WR SUHFLSLWDWH WKLV DPRXQW DW YDULRXV FRDJXODWLRQ S+ YDOXHV )RU WKH HFRQRPLF HYDOXDWLRQV WKUHH FKHPLFDO FRVWV ZLOO EH FRQVLGHUHG f 'RVDJH RI b TXLFNOLPH UHTXLUHG WR SURYLGH WKH RSWLPXP S+ f $PRXQW RI &2 UHTXLUHG WR Df VROXELOL]H WKH 0J2+f" LQ WKH VOXGJH DQG Ef UHGXFH WKH KLJK S+ RI WKH WUHDWHG ZDWHU WR WKH S+ RI VWDELOL]DWLRQ f $PRXQW RI PDNHXS 0J&2A6A2 WR EH DGGHG ,Q DGGLWLRQ WKUHH DOWHUQDWLYH FRQGLWLRQV DUH FRQVLGHUHG &DVH /LPH UHFRYHU\ LV SUDFWLFHG SURYLGLQJ &2 DW QR FRVW DQG b OLPH DW OE

PAGE 98

),* 62/8%,/,7< 2) 0J2+f $6 0J& f +f $6 $ )81&7,21 2) S+ )25 1$785$/ :$7(56

PAGE 99

&DVH ,, /LPH LV SXUFKDVHG DW OE EXW &2 LV DYDLODEOH DW QR FRVW IURP D VRXUFH ZLWKLQ RU QHDU WKH ZDWHU SODQW &DVH ,,, /LPH LV SXUFKDVHG DW OE DQG &2 JHQHUDWHG DW D FRVW RI OOE $ FRVW RI OE ZDV DVVXPHG IRU WKH 0J&2A6A2 $ VHULHV RI FXUYHV KDYH EHHQ GHYHORSHG WKDW ZLOO DOORZ D JUDSKLFDO GHWHUPLQDWLRQ RI WKH S+ IRU FRDJXODWLRQ DW WKH OHDVW FRVW 7KH OLPH UHTXLUHG WR LQFUHDVH WKH S+ IURP WR VRPH GHVLUHG YDOXH LV LQGHSHQGHQW RI WKH WRWDO FDUERQDWH SUHVHQW LQ WKH ZDWHU ,Q )LJXUH WKH FRVW WR UDLVH WKH S+ IURP WR WKH GHVLUHG S+ LV VKRZQ IRU WKH WKUHH FDVHV FRQVLGHUHG )LJXUH DOVR LQFOXGHV WKH FRVW RI &2 WR VWDELOL]H WKH ZDWHU EDnFN WR S+ 7KH 0J&2A +2 FRVW FXUYH ZDV GHYHORSHG IURP WKH VROXELOLW\ UHODWLRQn VKLS FXUYH ,W ZDV DVVXPHG WKDW 0J&2AA+A2 OHIW LQ VROXn WLRQ UHSUHVHQWHG D FRVW LH PDNHXS FRDJXODQW 6XPPLQJ WKH PDJQHVLXP FDUERQDWH FRVW DQG WKH OLPH DQG &2 FRVWV IRU WKH WKUHH FDVHV D WRWDO FRVW FXUYH LV VKRZQ LQ )LJXUH 7KH RSWLPXP S+ YDOXHV DQG FRVWV FDQ WKHQ EH GHWHUPLQHG DV &DVW S+ &RV W &DVH ,, S+ &RVW &DVH ,,, S+ &RVW

PAGE 100

&267 0* ),* 75($70(17 &267 ,1 0* )25 &D& $1' & 72 5$,6( 7+( 5$: :$7(5 S+ 72 $1' 5('8&( 7+( S+ %$&. 72 S+ )25 67$%,/,=$7,21

PAGE 101

,0* ),* ,, 3$57,$/ 75($70(17 &2676 ,1 0* )25 &FL2 & $1' 0J&2M $6 $ )81&7,21 2) &2$*8/$7,21 S+

PAGE 102

7R WKLV FRVW WKH FRVW WR UDLVH WKH S+ WR DQG VWDELOL]H WKH ZDWHU EDFN WR DSSUR[LPDWHO\ PXVW EH DGGHG 7KHVH FRVWV DUH UHODWHG WR WKH WRWDO DONDOLQLW\ RI WKH ZDWHU DQG DUH VKRZQ LQ )LJXUH DVVXPLQJ WKH &2 LQ WKH ZDWHU LV QHJOLJLEOH 6XPPLQJ WKH FRVWV LQ )LJXUHV DQG SURGXFHV WKH ZRUNLQJ FXUYH VKRZQ LQ )LJXUH $Q DGGLWLRQDO FRVW PXVW EH DGGHG IRU WKH OLPH UHTXLUHG WR SUHFLSLWDWH PDJQHVLXP K\GUR[LGH DQG IRU &2 XVHG LQ WKH UHFRYHU\ SURFHVV 7KH FRVWV DUH VKRZQ LQ )LJXUH DQG DUH D IXQFWLRQ RI WKH DPRXQW RI 0J&&!+ SUHFLSLWDWHG )LJXUHV DQG WKHUHIRUH UHSUHVHQW WKH WZR EDVLF ZRUNLQJ FXUYHV IRU FDOFXODWLQJ WUHDWn PHQW FKHPLFDO FRVWV 7KH WRWDO FRVW IRXQG PXVW EH UHGXFHG E\ DQ DPRXQW GHSHQGHQW XSRQ WKH PDJQHVLXP SUHVHQW LQ WKH UDZ ZDWHU DV WKLV ZLOO UHGXFH WKH 0J&2A6A2 PDNHXS ,I WKH FRDJXODn WLRQ S+ UHVXOWV LQ JUHDWHU WKDQ b UHFRYHU\ RI 0J&2AA,A2 WKLV YDOXH ZLOO H[FHHG WKH FRVW DOORFDWHG WR WKH 0J&2AAWA2 UHPDLQLQJ LQ VROXWLRQ DV VKRZQ LQ )LJXUH 7KHUHIRUH EHIRUH WUHDWPHQW FRVW HVWLPDWHV DUH PDGH IRU D ZDWHU XVLQJ )LJXUH WKH S+ RI VDWXUDWLRQ LV GHWHUPLQHG :KHQ WKH RSWLPXP S+ YDOXHV GHWHUPLQHG LQ )LJXUH DUH KLJKHU WKDQ WKH S+ IRU b UHFRYHU\ WKH WUHDWPHQW FRVWV DUH FDOFXODWHG XVLQJ )LJXUHV DQG 7KH DSSOLFDWLRQ RI WKHVH FXUYHV ZLOO EH LOOXVWUDWHG XVLQJ WKUHH ZDWHUV ZKLFK UHSUHVHQW DOO FRQGLWLRQV ZKLFK PLJKW EH HQFRXQWHUHG

PAGE 103

&267 60* ), 75($70(17 &267 ,1 0* $6 $ )81&7,21 2) 7+( 5$: :$7(5 727$/ $/.$/,1,7<

PAGE 104

^0* ),* c 75($70(17 &267 ,1 0* $6 $ )81&7,21 2) &2$*8/$7,21 S+

PAGE 105

),* 75($70(17 &267 ,1 0* $6 $ )81&7,21 2) 7+( $02817 2) 0J& 35(&,3,7$7('

PAGE 106

:DWHU $ $WODQWD *HRUJLD 7RWDO DONDOLQLW\ PJ 0DJQHVLXP DV 0J&2A Af PJ 3UHFLSLWDWHG 0J&2A6OA2 UHTXLUHG IURP MDU WHVW GDWDf PJ 7KLV ZDWHU KDG D VPDOO DPRXQW RI PDJQHVLXP SUHVHQW LQ WKH UDZ ZDWHU )LJXUH ZDV FKHFNHG WR VHH WKDW WKH PDJn QHVLXP UHFRYHU\ ZDV QRW JUHDWHU WKDQ b IRU WKH WKUHH FDVHV RI WUHDWPHQW 7KH S+ YDOXH ZKLFK ZRXOG UHSUHVHQW b UHn FRYHU\ ZDV JUHDWHU WKDQ VR WKH WZR EDVLF ZRUNLQJ FXUYHV FDQ EH XVHG IRU DOO FDVHV IRU WKLV ZDWHU )URP )LJXUHV DQG WKH FRVWV ZHUH FDOFXODWHG DV &DVH &DVH ,, &DVH ,,, )LJXUH IRU D WRWDO DONDOLQLW\ RI PJf )LJXUH IRU PJ 0J&2Af 777 &UHGLW IRU PDJQHVLXP LQ UDZ ZDWHU DW OE IRU 0J&2+ :DWHU % %DOWLPRUH 0DU\ODQG 7RWDO DONDOLQLW\ PJ 0DJQHVLXP DV 0J&2m+ PJ 3UHFLSLWDWHG PDJQHVLXP FDUERQDWH UHTXLUHG PJ

PAGE 107

)LJXUH VKRZV WKDW WKH S+ IRU b UHFRYHU\ LV ZKLFK LV OHVV WKDQ XVHG LQ &DVH 7KHUHIRUH IRU &DVH DQ RSWLPXP S+ RI ZLOO EH XVHG &DVHV ,, f DQG ,,, S+ DQG ZRXOG HDFK SURYLGH OHVV WKDQ b UHFRYHU\ VR )LJXUHV DQG DUH XVHG &DVH &RVW WR UDLVH S+ IURP WR IURP )LJXUH &RVW WR UDLVH S+ WR IRU DQ DONDOLQLW\ RI XVLQJ )LJXUH &RVW WR SUHFLSLWDWH PJ 0J&A+ IURP )LJXUH a &DVH ,, &DVH ,,, )LJXUH IRU D WRWDO DONDOLQLW\ RI PJ )LJXUH IRU PJ 0J&2Af &UHGLW PDJQHVLXP SUHVHQW LQ ZDWHU f :DWHU & :DVKLQJWRQ '& 7RWDO DONDOLQLW\ PJ 0DJQHVLXP DV 0J&2A A SUHVHQW PJ 3UHFLSLWDWHG 0J&2A2OA2 UHTXLUHG PJ

PAGE 108

)URP )LJXUH WKH S+ IRU UHFRYHU\ LV $OO FDVHV ZLOO XVH WKLV DV WKH S+ RI FRDJXODWLRQ DV DQ\ S+ KLJKHU ZLOO JLYH JUHDWHU WKDQ b UHFRYHU\ )LJXUH FRVW WR UDLVH S+ WR f )LJXUH IRU D WRWDO DONDOLn QLW\ RI PJf )LJXUH IRU PJ 0J&2Af &DVH &DVH ,, &DVH ,,, 7KLV PHWKRG RI GHWHUPLQLQJ FRVWV DQG RSWLPXP S+ IRU FRDJXODWLRQ LV EDVHG RQ WKH IROORZLQJ DVVXPSWLRQV f $ VSHFLILF DPRXQW RI SUHFLSLWDWHG 0J+f LV UHTXLUHG IRU VDWLVIDFWRU\ WUHDWPHQW DQG FDQ EH GHWHUPLQHGE\ MDU WHVWLQJ f 7KH SRROHG PDJQHVLXP VROXELOLW\ UHODWLRQVKLS ZLOO HVWLPDWH WKH DFWXDO PDJQHVLXP VROXELOLW\ LQ SUDFWLFH $V GLVFXVVHG SUHYLRXVO\ WKLV LV D YHU\ FRQVHUYDWLYH HVWLPDWH DQG QR GRXEW JUHDWHU UHFRYHU\ HIILFLHQFLHV ZLOO EH REWDLQHG DOORZn LQJ D ORZHU RSWLPXP RSHUDWLQJ S+ DQG VXEVHTXHQW FRVW VDYLQJV f $OO UHODWLRQVKLSV DUH EDVHG RQ WKH FRVWV VKRZQ ,I FRVWV DUH GLIIHUHQW WKH RSHUDWLQJ S+ IRU WKH PLQLPXP FRVW ZLOO EH GLIIHUHQW f $ PD[LPXP RI b UHFRYHU\ RI WKH UHTXLUHG 0J&2An A GRVDJH ,W LV SRVVLEOH WKDW D VWDEOH

PAGE 109

PDUNHW IRU 0J&2JA)82 ZLOO GHYHORS ZKLFK PLJKW PDNH LW HFRQRPLFDOO\ DWWUDFWLYH WR UHFRYHU JUHDWHU WKDQ b RI WKH UHTXLUHG 0J&2AnAOA2 GRVDJH f 0DJQHVLXP SUHVHQW LQ WKH UDZ ZDWHU LV DQ DVVHW DQG GHFUHDVHV WUHDWPHQW FRVWV 1R FUHGLWV DUH JLYHQ IRU WKH VDYLQJV LQ FKORULQH 7KH FRVWV IRU WKH VHYHQWHHQ QDWXUDO ZDWHUV VWXGLHG DUH FDOn FXODWHG DQG JLYHQ LQ 7DEOH 7KH SUHVHQW WUHDWPHQW FRVWV VKRZQ LQ WKLV WDEOH DUH IRU XVH RI RQO\ OLPH DQG DOXP DQG ZHUH GHWHUPLQHG HLWKHU IURP ODERUDWRU\ HYDOXDWLRQ RU DQQXDO UHSRUWVAf VXSSOLHG E\ WKH FLWLHV $ UHFHQW VXUYH\ RI ‘ WUHDWPHQW FRVWV LQ $ODEDPD ZDV XVHG LQ FRVW HVWLPDWLRQ IRU WKH FLWLHV LQ WKDW VWDWH 'DLO\ ZDWHU SURGXFWLRQ ZDV WDNHQ IURP WKH 3XEOLF +HDOWK 6HUYLFH 6XUYH\ ZKHUH SUHVHQW SURGXFWLRQ ZDV QRW NQRZQ (OHFWURSKRUHWLF 0RELOLW\ DV D 0HDVXUH RI 7UHDWPHQW (IILFLHQF\ 7KH GHJUHH WR ZKLFK HOHFWURSKRUHWLF PRELOLW\ GHVn FULEHV WUHDWPHQW HIILFLHQF\ GHWHUPLQHV LWV YDOXH DV DQ DQDO\WLFDO WRRO LQ WKH FRDJXODWLRQ SURFHVV $ OLQHDU UHn JUHVVLRQ DQDO\VLV EHWZHHQ SDUWLFOH PRELOLW\ GXULQJ FRDJXODn WLRQ DQG VHWWOHG FRORU RU WXUELGLW\ JDYH DQ HYDOXDWLRQ RI WKLV UHODWLRQVKLS IRU WZHOYH RI WKH QDWXUDO ZDWHUV 7DEOH VXPPDUL]HV WKH UHVXOWV ,Q HYHU\ FDVH PRELOLW\ VKRZHG D KLJKO\ VLJQLILFDQW OLQHDU FRUUHODWLRQ ZLWK FRORU UHGXFn WLRQ )LYH RI WKH WZHOYH ZDWHUV LQGLFDWHG D KLJKO\

PAGE 110

7$%/( (&2120,& &203$5,621 2) 75($70(17 0(7+2'6 )25 1$785$/ :$7(56 Ua &,7< Ef $YJ 'DLO\ 3URGXFWLRQ 0' Ff 9e& 5HTXLUHG aJOf &RVW LQ 60* IRU 0J&2R 7UHDWPHQW S+ IRU 0LQLPXP &RVW DQG &RDJXODWLRQ Jf 3UHVHQW 7UHDWPHQW &RVWH &DV Gf &DVH Hf &DVH &AV W S+ &RV W S+ &RVW 3+ c$WODQWD D c%DOWLPRUH 0G %LUPLQJKDP $OD Df &OHYHODQG 2KLR 'HWURLW 0LFK c+XQWVYLOOH $OD c-DFNVRQ 0LVV 6/DQHWW $OD c/RXLVYLOOH .\ c0RQWJRPHU\ $OD c1DVKYLOOH 7HQQ c2SHOLND $OD c3KLODGHOSKLD 3D & c5LFKPRQG 9D _MXVFDLRRVD $OD )LDVKLQHWRQ & Df 5HTXHVWHG WR 'H GHOHWHG IURP SXEOLFDWLRQ Ef )URP 3+ 6XUYH\ ZKHUH SUHVHQW SURGXFWLRQ QRW NQRZQ Ff 3UHFLSLWDWHG 0J&2 DV 0J2+f Gf /LPH UHFRYHU\ &DX WRQ Hf &2 VRXUFH DYDLODEOH &D2 # WRQ & OE &D2 WRQ Jf DVHG RQ DQQXDO UHSRUW VXSSOLHG E\ FLW\ RU ODERUDWRU\ HYDOXDWLRQ XVLQJ DOXP &RVW LQFOXGHV RQO\ OLPH DQG DOXP

PAGE 111

7$%/( 5(/$7,216+,3 %(7:((1 (/(&7523+25(7,& 02%,/,7,(6 $1' 6(77/(' &2/25 25 785%,',7< )25 1$785$/ :$7(56 ,QGHSHQGHQW 2EVHUYD &RUUHODWLRQ 6WDQGDUG &LW\ 9DULDEOH WLRQ &RHIILFLHQW 'HYLDWLRQ 5LFKPRQG &RORU rr 0RQWJRPHU\ &RORU rr $WODQWD &RORU rr -DFNVRQ &RORU rr 7XVFDORRVD &RORU rr /RQHWW &RORU rr 5LFKPRQG 7XUELGLW\ rr 0RQWJRPHU\ 7XUELGLW\ rr &OHYHODQG 7XUELGLW\ r &OHYHODQGD 7XUELG LW\ $WODQWD 7XUELGLW\ -DFNVRQ 7XUELGLW\ rr %LUPLQJKDP 7XUELGLW\ 3KLODGHOSKLD 7XUELGLW\ r :DVKLQJWRQ '& 7XUELG LW\ /RQHWW 7XUELGLW\ rr +XQWVYLOOH 7XUELGLW\ 2SHOLND 7XUE LG LW\ f rr 7XVFDORRVD 7XUELGLW\ DLQFOXGHV GDWD XVLQJ DFWLYDWHG VLOLFD fGHQRWHV VLJQLILFDQW FRUUHODWLRQ D f rrGHQRWHV KLJK VLJQLILFDQW FRUUHODWLRQ D f

PAGE 112

VLJQLILFDQW OLQHDU FRUUHODWLRQ EHWZHHQ PRELOLW\ DQG VHWWOHG WXUELGLW\ ZKLOH WZR ZDWHUV ZHUH VLJQLILFDQWO\ FRUUHODWHG )LJXUH LOOXVWUDWHV WKH UHODWLRQVKLS EHWZHHQ FRDJXODWLRQ SDUWLFOH PRELOLW\ DQG VHWWOHG FRORU IRU -DFNVRQ 0LVVLVVLSSL ZDWHU )LJXUH LOOXVWUDWHV D KLJK GHJUHH RI FRUUHODWLRQ EHWZHHQ FRDJXODWLRQ SDUWLFOH PRELOLW\ DQG VHWWOHG WXUELGLW\ IRU /DQHWW $ODEDPD ZDWHU 7KH HIIHFW RI DFWLYDWHG VLOLFD RQ WKH PRELOLW\ WXUELGLW\ UHODWLRQVKLS LV LOOXVWUDWHG IRU WKH &OHYHODQG ZDWHU $ VLJQLILFDQW UHODWLRQVKLS H[LVWHG EHWZHHQ SDUWLFOH PRELOLW\ DQG UHVLGXDO WXUELGLW\ IRU VHYHQ FRDJXODWLRQ H[SHULPHQWV XVLQJ DOXP DV WKH IORFFXODQW DLG :KHQ WKH ILYH H[SHULPHQWV XVLQJ DFWLYDWHG VLOLFD DV WKH IORFFXODQW DLG DUH LQFOXGHG DOPRVW QR FRUUHODWLRQ H[LVWV 7KLV HIIHFW ZDV QRWLFHDEOH IRU DOO MDU WHVWV XVLQJ DFWLYDWHG VLOLFD ,Qn FUHDVHG GRVDJHV LPSURYHG WKH WUHDWPHQW HIILFLHQF\ ZLWKRXW UHGXFLQJ WKH SDUWLFOH PRELOLW\ &KDUJH UHYHUVDO GLG QRW UHVXOW LQ D UHVWDELOL]DWLRQ RI WKH FROORLGDO FRORU QRU WXUELGLW\ DV ZRXOG EH H[SHFWHG IRU DOXP RU IHUULF VXOIDWH WUHDWPHQW ,Q )LJXUH WXUn ELGLW\ UHPRYDO LQFUHDVHG DV WKH PRELOLW\ EHFDPH PRUH SRVLn WLYH ,Q WKH QRUPDO S+ UDQJH RI FRDJXODWLRQ ZLWK DOXP WKH SUHGRPLQDQW K\GURO\VLV VSHFLHV LV $O&2+fA ZKLFK LV UHODWLYH O\ XQFKDUJHGn )RU FRDJXODWLRQ ZLWK PDJQHVLXP FDUERQDWH SRVLWLYHO\ FKDUJHG PDJQHVLXP K\GUR[LGH ZLOO SUHGRPLQDWH DW KLJK FRDJXODQW GRVDJHV $ SRVVLEOH VZHHSLQJ HIIHFW RI

PAGE 113

6(77/(' &2/25 37&R XQLWVf ),* 6(77/(' &2/25 $6 $ )81&7,21 2) 3$57,&/( 02%,/,7< '85,1* &2$*8/$7,21 -$&.621 0,66,66,33, :$7(5

PAGE 114

),* 6(77/(' 785%,',7< $6 $ )81&7,21 2) &2$*8/$7,21 0/7< /$1(77 :$7(5

PAGE 115

WKH FRORU RU WXUELGLW\ E\ WKH H[FHVVLYH DPRXQW RI PDJQHVLXP K\GUR[LGH SURGXFHG FRXOG H[SODLQ WKH JRRG WXUELGLW\ UHPRYDOV DW KLJKO\ SRVLWLYH PRELOLWLHV 3UHGLFFLQ RI WKH 5HTXLUHG &RDJXODQW 'RVH (DFK RI WKH ZDWHUV UHTXLUHG VRPH PLQLPXP DPRXQW RI PDJQHVLXP K\GUR[LGH IORH IRU VDWLVIDFWRU\ WUHDWPHQW 7KH DPRXQW RI 0J&2Af6IA2 IHG DV D FRDJXODQW LV UHODWLYHO\ XQn LPSRUWDQW VLQFH RQO\ WKDW SRUWLRQ SUHFLSLWDWHG DV 0J+f LV HIIHFWLYH LQ FRDJXODWLRQ &RQVLGHULQJ WKH PDJQHVLXP SUHVHQW LQ WKH UDZ ZDWHU WKH PDJQHVLXP DGGHG IRU FRDJXODn WLRQ DQG WKH PDJQHVLXP LQ VROXWLRQ DIWHU FRDJXODWLRQ WKH PDJQHVLXP SUHFLSLWDWHG DV 0J+f FDQ EH FDOFXODWHG 7KH ORZHVW DPRXQW RI 0J+f WR JLYH VDWLVIDFWRU\ WUHDWPHQW ZDV GHWHUPLQHG IRU HDFK RI WKH VHYHQWHHQ ZDWHUV 7KH UHTXLUHG 0J+f GRVDJH WR WUHDW D ZDWHU PXVW UHODWH WR WKH FKHPLFDO RU SK\VLFDO SURSHUWLHV RI WKH ZDWHU $ VWHSZLVH OLQHDU UHJUHVVLRQ DQDO\VLV ZDV PDGH RQ WKH GDWD VKRZQ LQ 7DEOH 7KH UHTXLUHG 0J+f DV 0J&2An6OA2 ZDV UHJUHVVHG DV IXQFWLRQ RI D ZDWHUnV FRORU WXUELGLW\ WRWDO DONDOLQLW\ DQG WRWDO KDUGQHVV $JDLQ D %0'5 OLEUDU\ FRPSXWHU SURJUDP ZDV XVHG IRU WKH DQDO\VLV 7KH UHVXOWLQJ HTXDWLRQ ZDV 0LQLPXP PDJQHVLXP GRVDJH DV PJ RI 0J&2Af +2f WXUELGLW\f RUJDQLF FRORUf WRWDO DONDOLQLW\f WRWDO KDUGQHVVf

PAGE 116

7$%/( 5(48,5(' 0$*1(6,80 '26( $6 5(/$7(' 72 3+<6,&$/ $1' &+(0,&$/ &+$5$&7(5,67,&6 )25 1$785$/ :$7(56 0J 5HTXLUHG UQJ DV 0J&2A6+A2f 7XUELGLW\ -& f &RORU 3W &R f $ONDOLQLW\ PJf +DUGQHVV PJf

PAGE 117

7KH LQGHSHQGHQW YDULDEOHV H[SODLQHG SHUFHQW RI YDULDn WLRQV RI WKH GHSHQGHQW YDULDEOH WKH PLQLPXP PDJQHVLXP GRVDJH ZLWK D VWDQGDUG HUURU RI WKH HVWLPDWH RI 7KH YDULDEOHV ZHUH DGGHG LQ WKH RUGHU RI JUHDWHVW UHGXFWLRQ RI WKH UHJUHVVLRQ VXPV RI VTXDUHV LH WXUELGLW\ H[SODLQHG PRUH RI WKH YDULDWLRQ RI WKH GHSHQGHQW YDULDEOH WKDQ GLG KDUGQHVV 7KLV HTXDWLRQ KDV UHJUHVVLRQ FRHIILFLHQWV DOPRVW LGHQWLFDO WR WKRVH IRXQG IRU WKH V\QWKHWLF ZDWHUV :KLOH WXUELGLW\ ZDV VLJQLILFDQW LQ H[SODLQLQJ UHODWLRQVKLSV RUJDQLF FRORU GHWHUPLQHV WKH UHTXLUHG FRDJXODQW GRVDJH 7KH DYHUDJH FRORU IRU WKH VHYHQWHHQ ZDWHUV VWXGLHG ZDV RQO\ +DG LW EHHQ KLJKHU SRVVLEO\ PRUH VWDWLVWLFDO VLJQLILn FDQFH ZRXOG KDYH UHVXOWHG DV ZDV WKH FDVH IRU WKH V\QWKHWLF ZDWHUV ,W LV LQWHUHVWLQJ WR QRWH WKDW QHLWKHU WKH EDVH H[FKDQJH FDSDFLW\ QRU WKH OHYHO RI WXUELGLW\ SUHVHQW LQIOXn HQFHG WKH FRDJXODQW GRVH WR DQ\ JUHDW H[WHQW 0RQWPRULO ORQLWH FOD\ HPDWKOLWH FOD\ DQG QDWXUDO WXUELGLW\ HDFK JDYH VLPLODU SUHGLFWLYH HTXDWLRQV 2QH KXQGUHG -&8 RI WXUELGLW\ ZRXOG UHTXLUH RQO\ WR PJ RI SUHFLSLWDWHG 0J&2An6OA2 &KDUJH UHYHUVDO GLG QRW RFFXU LQ FRDJXODWLQJ HPDWKn OLWH RU PRQWPRULOORQLWH WXUELGLW\ ,Q VHYHUDO V\QWKHWLF ZDWHU H[SHULPHQWV XVLQJ NDROLQLWH FOD\ WXUELGLW\ D YHU\ ORZ EDVHH[FKDQJH FDSDFLW\ FOD\ FKDUJH UHYHUVDO ZDV FRPPRQ 3RVVLEO\ FKDUJH UHYHUVDO LQ QDWXUDO ZDWHU FRDJXODWLRQ LV UHODWHG WR WKH EDVH H[FKDQJH FDSDFLW\ RI WKH WXUELGLW\ SUHVHQW ZKLFK FRXOG WKHQ EH D PHDVXUH RI WKH W\SH RI FOD\ SUHVHQW

PAGE 118

&RDJXODQW 5HFRYHU\ $V SUHYLRXVO\ GLVFXVVHG PDJQHVLXP LV VHSDUDWHG IURP VRIWHQLQJ SODQW VOXGJH DW 'D\WRQ E\ FDUERQDWLRQ 7KH UDZ ZDWHU DW 'D\WRQ LV D YHU\ FOHDU KDUG JURXQG ZDWHU ZLWK QR WXUELGLW\ RU RUJDQLF FRORU SUHVHQW &RDJXODWLRQ RI WXUELG ZDWHUV FRQWDLQLQJ RUJDQLF FRORU ZRXOG EH D GLIIHUHQW VLWXDn WLRQ 7XUELGLW\ DQG RUJDQLF FRORU EHFRPH KLJKO\ FRQFHQWUDWHG LQ WKH VOXGJH DQG ZRXOG EH H[SHFWHG WR LQIOXHQFH PDJQHVLXP UHFRYHU\ 7HQ H[SHULPHQWV IRXU ZLWK QDWXUDO DQG VL[ ZLWK V\QWKHWLF ZDWHUV HYDOXDWHG WKHVH HIIHFWV 7KH UHVXOWV RI ILYH RI WKHVH H[SHULPHQWV DUH VKRZQ LQ 7DEOHV WKURXJK )LJXUH D SORW RI WKH YDOXHV VKRZQ LQ 7DEOH JUDSKL FDOO\ GHPRQVWUDWHV WKH UHODWLRQVKLS EHWZHHQ 0J &Df DQG FRORU DV FDUERQDWLRQ SURFHHGV 7DEOH VXPPDUL]HV WKH UHVXOWV RI WKH UHFRYHU\ H[SHULPHQWV 7KHVH H[SHULPHQWV VKRZ WKDW QHDUO\ b UHn FRYHU\ RI PDJQHVLXP IURP WKH VOXGJH ZDV SRVVLEOH 6HYHUDO H[SHULPHQWV LQGLFDWHG JUHDWHU WKDQ b UHFRYHU\ RI PDJQHn VLXP IURP WKH VOXGJH $ FRPELQDWLRQ RI DQDO\WLFDO HUURU DQG UHOHDVH RI PDJQHVLXP E\ WKH PRQWPRULOORQLWH FOD\ RQ FDUn ERQDWLRQ QR GRXEW DFFRXQWHG IRU WKLV HUURU 7KH UHOHDVH RI FRORU RQ FDUERQDWLRQ ZRXOG QRW EH D SUREOHP LQ FRDJXODn WLQJ ZDWHUV ZLWK DQ DYHUDJH FRORU RI RU OHVV 0RUH KLJKO\ FRORUHG ZDWHUV ZRXOG UHTXLUH HLWKHU ZDVWLQJ RI D SRUWLRQ RI WKH UHFRYHUHG FRDJXODQW RU D PRUH HODERUDWH UHFRYHU\ SURFHVV

PAGE 119

7$%/( &$5%21$7,21 2) 6/8'*( 352'8&(' )520 7+( &2$*8/$7,21 2) /,7(56 2) 6<17+(7,& :$7(5 &217$,1,1* PJ n 2) 25*$1,& &2/25 $1' PJ 785%,',7< 7LPH 0LQf 0JPJOf &DPJOf &RORU PO RI VOXGJH PDGH XS WR OLWHUV ZLWK GLVWLOOHG ZDWHU

PAGE 120

7$%/( &$5%21$7,21 2) 6/8'*( 352'8&(' )520 7+( &2$*8/$7,21 2) /,7(56 2) 6<17+(7,& :$7(5 &217$,1,1* PJ f 25*$1,& &2/25 $1' PJ 785%,',7< 7LPH 0LQf 0JPJOf &DIPJOf &RORU 3W&E XQLWf PO RI VOXGJH PDGH XS WR OLWHUV ZLWK GLVWLOOHG ZDWHU

PAGE 121

7$%/( &$5%21$7,21 2) 6/8'*( 352'8&(' )520 7+( &2$*8/$7,21 2) /,7(56 2) 6<17+(7,& :$7(5 &217$,1,1* PJ 25*$1,& &2/25 $1' PJ 785%,',7< 7LPH PLQ f 3+ 0JPJOf &DA PJf 2UJDQLF &RORU 3W&R XQLWVf PO VOXGJH PDGH XS WR ZLWK GLVWLOOHG ZDWHU EHIRUH FDUERQDWLRQ

PAGE 122

7$%/( &$5%21$7,21 2) 6/8'*( 352'8&(' )520 7+( &2$*8/$7,21 2) /,7(56 2) 6<17+(7,& :$7(5 &217$,1,1* PJ 25*$1,& &2/25 $1' PJ 785%,',7< 7LPH 0LQf S+ 0JPJOf &RORU &D PJf 3W&R XQLWVf PO RI VOXGJH PDGH XS WR OLWHU YROXPH 7$%/( &$5%21$7,21 2) 6/8'*( 352'8&(' )520 7+( &2$*8/$7,21 2) /,7(56 2) 1$785$/ :$7(5 &217$,1,1* PJ 2) 25*$1,& &2/25 $1' PJ $''(' 0217025,//21,7( &/$< 785%,',7< 0LQf S+ 0JIPJf &DnPJf SW&R XQLWVf 7RWDO VOXGJH YROXPH PO PO PDGH XS WRa IRU WKLV H[SHULPHQW

PAGE 123

),* 0$*1(6,80 5(&29(5< %< &$5%21$7,21

PAGE 124

7$%/( } &2$*8/$17 5(&29(5< 678',(6 :DWHU &RORU 3 W&R XQLWV f 0J&2R 7XU + ELGLW\ $GGHG -& f *UDPVf 0J&2 R +LQ 6OXGJH *UDPVf 3HUFHQW &RORU 5HOHDVHG b 0J& 5HFRYHUHG )URP 6OXGJH 0RQWJRPHU\ 0RQWJRPHU\ $WODQWD f $XVWLQ &DU\ )RUHVW 6\QWKHWLF n 6\QWKHWLF 6\QWKHWLF 6\QWKHWLF 6\QWKHWLF 6\QWKHWLF

PAGE 125

,Q HYHU\ FDVH WKH FDUERQDWHG VOXGJH ILOWUDWH ZDV IUHH IURP WXUELGLW\ LQGLFDWLQJ WKDW UHOHDVH RI WXUELGLW\ ZRXOG QRW EH D SUREOHP 7KH DPRXQW RI FDOFLXP DV FDOFLXP FDUERQn DWH UHOHDVHG E\ WKH VOXGJH RQ FDUERQDWLRQ UDQJHG IURP PJnO WR D KLJK RI PJ $VVXPLQJ WKDW WKH VOXGJH YROXPH ZDV HTXDO WR b RI WKH WRWDO IORZ WKH KLJK YDOXH ZRXOG UHSUHVHQW DQ LQFUHDVH RI RQO\ PJ WRWDO KDUGQHVV 7KH UDWH RI FDUERQDWLRQ DQG WKH DPRXQW RI WXUELGLW\ LQ WKH UDZ ZDWHU GLG QRW DSSHDU WR HIIHFW WKH VROXELOL]DWLRQ RI 0J+f RU WKH UHOHDVH RI FRORU DQG FDOFLXP &RORU UHOHDVH ZDV FORVHO\ UHODWHG WR PDJQHVLXP VROXELOL]DWLRQ JHQHUDOO\ UHDFKLQJ D PD[LPXP ZKHQ DERXW b RI WKH PDJQHVLXP KDG EHHQ UHFRYHUHG $Q LQWHUHVWLQJ DVSHFW RI WKH VOXGJH UHFRYHU\ H[SHULn PHQWV ZDV WKH IDFW WKDW FRQVLGHUDEO\ OHVV PDJQHVLXP ZDV IRXQG LQ VROXWLRQ DIWHU FRDJXODWLRQ LQ WKH OLWHU YHVVHO WKDQ LQ WKH OLWHU MDU WHVWV 7KH PDJQHVLXP YDOXHV IRXQG IRU WKHVH VWXGLHV DW WKH LQGLFDWHG S+ YDOXHV DUH VKRZQ LQ 7DEOH 7$%/( 0$*1(6,80 62/8%,/,7< $6 $ )81&7,21 2) S+ )25 &2$*8/$17 5(&29(5< 678',(6 0JPJOf 0J&2A r +PJOf 3+

PAGE 126

7KLV FRXOG KDYH EHHQ GXH WR D PDVV DFWLRQ HIIHFW LQFUHDVLQJ WKH 0J+f SUHFLSLWDWLRQ UDWH +RZHYHU WKH ORQJHU WLPH DOORZHG IRU VHWWOLQJ IURP WR KRXUV LV D PRUH OLNHO\ H[SODQDWLRQ %RWK HIIHFWV ZRXOG EH SUHVHQW LQ DFWXDO SODQW FRQGLWLRQV WHQGLQJ WR PDNH WKH HFRQRPLF HYDOXDWLRQ EDVHG RQ KLJKHU PDJQHVLXP VROXELOLW\ PRUH FRQVHUYDWLYH /LPLWHG VWXGLHV RI VOXGJH ILOWHUDELOLW\ VKRZHG WKDW WKH FDUERQDWHG VOXGJH ZDV FRQVLGHUDEO\ HDVLHU WR ILOWHU WKDQ WKH XQFDUERQDWHG VOXGJH 7UHDWPHQW RI WKH FDUERQDWHG VOXGJH ZLWK PJ RI DQLRQLF SRO\PHU LQFUHDVHG WKH ILOWHUDELOLW\ ZKLOH KLJKHU GRVDJHV WHQGHG WR KDYH D QHJDWLYH HIIHFW $SSUR[LPDWHO\ J RI &D&2A JUHDWO\ LPSURYHG ILOWHUDELOLW\ SURGXFLQJ D GU\ IULDEOH FDNH ,QGLFDWLRQV DUH WKDW RQO\ VOXGJHV SURGXFHG LQ WUHDWLQJ YHU\ VRIW ZDWHUV ZLOO SUHVHQW DQ\ SUREOHP LQ GHZDWHULQJ $GGLWLRQ RI DQ LQHUW PDWHULDO VXFK DV &D&2A RU WKH XVH RI SRO\PHUV PD\ EH QHFHVn VDU\ IRU WKHVH ZDWHUV 7KH &D&2A SUHFLSLWDWHG LQ VWDELOL]Dn WLRQ PD\ EH DGHTXDWH IRU WKLV SXUSRVH &RDJXODWLRQ :LWK 5HFRYHUHG 0DJQHVLXP 7DEOH GHPRQVWUDWHV WKH HIIHFWLYHQHVV RI UHFRYHUHG PDJQHVLXP 7KUHH OHYHOV RI PDJQHVLXP FDUERQDWH ZHUH XVHG WR GHWHUPLQH WKH HIIHFWLYHQHVV RI WZLFHUHFRYHUHG PDJQHVLXP ELFDUERQDWH LQ VROXWLRQ 7KLV PDJQHVLXP KDG EHHQ XVHG WZLFH LQ SUHYLRXV H[SHULPHQWV 7KH UHVXOWLQJ VHWWOHG FRORU WXUn ELGLW\ VWDELOL]HG FKHPLFDO FKDUDFWHULVWLFV RI ZDWHU VR WUHDWHG ZHUH DOPRVW LGHQWLFDO ZLWK WKRVH RI ZDWHU WUHDWHG ZLWK

PAGE 127

7$%/( (9$/8$7,21 2) 7:,&( 5(&<&/(' 0$*1(6,80 ,1 &2$*8/$7,21 2) 6<17+(7,& :$7(5 -DU 1R 'RVDJH LQ SSP S+ &RORU 7XUELGLW\ 0RELOLW\ $ONDOLQLW\ 6WDE WR S+ &RORU $ONDOLQLW\ +DUGQHVV 0DJQHVLXP DV &D&2A &2 R A &-! &1M Z ? WL UD R R $OXP R F! R R &2 2 8 P R X R X ; & 1& 7 r r r &KDUDFWHULVWLFV RI UDZ ZDWHU $ONDOLQLW\ DV &D&2A 7RWDO +DUGQHVV DV &FL&2 A S+ 2UJDQLF &RORU 7XUELGLW\ 7\SH &OD\ &RPPHQWV r7ZLFH UHFRYHUHG VROXWLRQ RI 0J+&f XVHG DV FRDJXODQW

PAGE 128

IUHVK PDWHULDO 7KH UHXVHG PDJQHVLXP ELFDUERQDWH ZDV WKDW UHFRYHUHG IURP WUHDWLQJ D KLJKO\ FRORUHG ZDWHU WKXV UHSUHn VHQWLQJ WKH PRVW XQIDYRUDEOH FRQGLWLRQV &RPSDULVRQ RI 9DOXHV IRU 5HVLGXDO 0DJQHVLXP 'HWHUPLQHG E\ ('7$ :LWK 7KRVH 'HWHUPLQHG E\ $WRPLF $EVRUSWLRQ 7KURXJKRXW WKH VWXGLHV PDJQHVLXP ZDV GHWHUPLQHG XVLQJ ERWK ('7$ WLWUDWLRQ DQG DWRPLF DEVRUSWLRQ VSHFWURn SKRWRPHWU\ ,W ZDV IRXQG WKDW DWRPLF DEVRUSWLRQ JDYH FRQn VLVWHQWO\ KLJKHU UHVXOWV WKDW GLG ('7$ +RZHYHU ('7$ WLn WUDWLRQV RI WKH VWDQGDUG VROXWLRQV XVHG IRU DWRPLF DEVRUSn WLRQ DJUHHG ZLWK WKH LQGLFDWHG YDOXHV 7KH GDWD IRU GHWHUPLQDWLRQV RI PDJQHVLXP XVLQJ ERWK PHWKRGV DUH VKRZQ LQ 7DEOH :KHQ PDJQHVLXP YDOXHV GHWHUPLQHG E\ DWRPLF DEVRUSWLRQ ZHUH FRPSDUHG E\ UHJUHVVLRQ DQDO\VLV ZLWK WKRVH GHWHUPLQHG E\ ('7$ WKH IROORZLQJ UHODWLRQVKLS ZDV IRXQG 0J E\ $$f 0J E\ ('7$f $ FRUUHODWLRQ FRHIILFLHQW RI ZLWK D VWDQGDUG HUURU RI WKH HVWLPDWH HTXDO WR LQGLFDWHV D KLJKO\ VLJQLILFDQW OLQHDU UHODWLRQVKLS 7KLV UHODWLRQVKLS LV JUDSKLFDOO\ GHPRQVWUDWHG LQ )LJXUH 7KH YDOXHV IRU PDJQHVLXP XVHG WR GHYHORS WKLV UHODn WLRQVKLS ZHUH JHQHUDOO\ OHVV WKDQ PJ DV 0J LRQ ([FHOOHQW DJUHHPHQW EHWZHHQ WKHVH WZR PHWKRGV KDV EHHQ UHSRUWHG IRU FRQFHQWUDWLRQV RI PDJQHVLXP LRQ JUHDWHU WKDQ PJOA

PAGE 129

0$*1(6,80 < (27 $ PJOf ),* &203$5,621 2) $720,& $%62537,21 $1' ('7$ $6 $1$/<7,&$/ 0(7+2'6 2) '(7(5n 0,1,1* 0$*1(6,80 ,1 1$785$/ :$7(56

PAGE 130

7$%/( &203$5,621 2) $720,& $%62537,21 $1' ('7$ $6 0(7+2'6 )25 0$*1(6,80 $1$/<6,6 0DJQHVLXP PJf $WRPLF $EVRUSWLRQ 0DJQHVLXP PJf ('7$ n

PAGE 131

7$%/( &RQWLQXHGf 0DJQHVLXP PJf $WRPLF $EVRUSWLRQ $2 0DJQHVLXP PJf ('7$

PAGE 132

7KH IRUPDWLRQ RI D PDJQHVLXP FRPSOH[ PRUH VWDEOH WKDQ WKH ('7$PDJQHVLXP FRPSOH[ ZRXOG H[SODLQ WKH FRQVLVWHQW GLIIHUHQFHV IRXQG LQ WKLV ORZ FRQFHQWUDWLRQ UDQJH 7KLV SRLQW QHHGV IXUWKHU VWXG\ 7KURXJKRXW WKLV VWXG\ DWRPLF DEVRUSWLRQ YDOXHV ZHUH XVHG IRU PDJQHVLXP FRQFHQWUDWLRQV OHVV WKDQ PJ $SSOLFDWLRQ RI WKH 3URFHVV 7KH XVH RI WKLV QHZ FRDJXODWLRQ SURFHVV LQ ODUJH ZDWHU WUHDWPHQW SODQWV DOORZV WKH UHFRYHU\ DQG UHXVH RI ERWK WKH OLPH DQG WKH PDJQHVLXP FDUERQDWH ZLWK FDUERQ GLR[LGH VXSSOLHG IURP WKH UHFDOFLQDWLRQ RI WKH OLPH 7KH PDMRULW\ RI WKH PRUH WKDQ ZDWHU SODQWV LQ WKH 8QLWHG 6WDWHV KRZHYHU ZLOO QRW ILQG LW HFRQRPLFDOO\ DWWUDFWLYH WR UHFRYHU OLPH 6LQFH WKH &2 SURGXFHG LQ UHFDOFLQDWLRQ JUHDWO\ UHGXFHV WKH WUHDWPHQW FRVW LW ZRXOG EH DGYDQWDJHRXV WR ORFDWH DQ LQH[SHQVLYH VRXUFH QHDU WKH SODQW ,Q PDQ\ FDVHV VXFK D VRXUFH H[LVWV LQ WKH IRUP RI GLHVHO RU QDWXUDO JDV HQJLQH H[KDXVW VWDFN JDVHV IURP LQFLQHUDWRUV RU SRZHU SODQWV RU VRPH RWKHU LQGXVWULDO VRXUFH $V QRWHG LQ 7DEOH WKH GLIIHUHQFH LQ WUHDWPHQW FRVWV EHWZHHQ &DVHV ,, DQG ,,, LV GXH HQWLUHO\ WR WKH SXUFKDVH RI &2A} $ IORZ GLDJUDP RI WKH XQLW RSHUDWLRQV LQYROYHG LV VKRZQ LQ )LJXUH 7KH VOXGJH IURP WKH VHWWOLQJ EDVLQ FRQWDLQLQJ 0J2+f &D& WXUELGLW\ FRORU HWF LV SXPSHG WR WKH FDUERQDWLRQ WDQN &DUERQ GLR[LGH LV LQWURGXFHG ZLWK

PAGE 133

),/7(5 %$&. :$6+ ),* ,6 )/2: ',$*5$0 )25 785%,',7< 5(029$/ 3/$17 86,1* 0J& $1' /,0( 5(&$/&,1,1*

PAGE 134

UDSLG PL[LQJ IRU D GHWHQWLRQ WLPH RI DSSUR[LPDWHO\ RQH KRXU 7KH PDJQHVLXP LV FRPSOHWHO\ VROXELOL]HG DV 0J&O,&2AA RU 0J&2A ZKLOH WKH &D&2A WXUELGLW\ HWF UHPDLQ DV VROLGV 9DFXXP ILOWUDWLRQ VHSDUDWHV WKH VROLGV VR WKDW WKH OLTXLG SKDVH FRQWDLQLQJ WKH PDJQHVLXP FDQ EH UHF\FOHG IRU UHXVH ,I OLPH LV QRW UHFRYHUHG WKLV ILOWHU FDNH UHSUHVHQWV D SODQW ZDVWH ZKLFK FRXOG EH KDQGOHG HDVLO\ DQG GLVSRVHG RI DV ODQGILOO RU LW PLJKW ILQG DSSOLFDWLRQ LQ DJULFXOWXUDO XVH DV D S+ VWDELOL]HU IRU VRLO &DUERQ GLR[LGH IURP HLWKHU D VRXUFH DYDLODEOH QHDU WKH SODQW RU E\ JHQHUDWLRQ LV VXSSOLHG WR WKH FDUERQDWLRQ DQGn VWDELOL]DWLRQ XQLWV 7KH KDWFKHG OLQHV LQ )LJXUH VKRZ WKH DGGLWLRQDO XQLW RSHUDWLRQV QHFHVVDU\ IRU OLPH UHFRYHU\ 7KH ILOWHU FDNH LV VOXUULHG DQG WKH FOD\ WXUELGLW\ FRORU HWF IORDWn HG RII LQ D VPDOO IORWDWLRQ FHOO 7KLV SURFHVV ZKLFK KDV EHHQ VKRZQ WR EH VXFFHVVIXO DW D YHU\ PLQLPDO FRVW SXULILHV WKH FDOFLXP FDUERQDWH EHIRUH UHFRYHU\ 7KH VPDOO YROXPH RI IORDW ZKLFK FDQ HDVLO\ EH GHZDWHUHG DQG GLVSRVHG RI DV ODQG ILOO UHSUHVHQWV WKH RQO\ ZDVWH SURGXFW IURP WKH HQWLUH SURFHVV 7KH UHODWLYHO\ SXUH FDOFLXP FDUERQDWH LV WKHQ GHZDWHUHG E\ FHQWULIXJDWLRQ DQG EXUQHG LQ D OLPH NLOQ SURn GXFLQJ FDOFLXP R[LGH DQG FDUERQ GLR[LGH 7KH FDOFLXP R[LGH LV WKHQ VODNHG DQG UHXVHG ZKLOH WKH FDUERQ GLR[LGH LV XVHG IRU VWDELOL]DWLRQ RI WKH ZDWHU DQG FDUERQDWLRQ RI WKH VOXGJH DV VKRZQ LQ WKH IORZ GLDJUDP r f

PAGE 135

6OXGJH WKLFNHQLQJ EHIRUH FDUERQDWLRQ FRXOG SURYH WR EH GHVLUDEOH )RU PRVW ZDWHUV WKH VOXGJH EHIRUH FDUERQDWLRQ ZLOO UDUHO\ H[FHHG b VROLGV VXVSHQGHG LQ ZDWHU FRQWDLQLQJ PJ RI K\GUR[LGH DONDOLQLW\ 7KLFNHQLQJ WKH VOXGJH WR b VROLGV ZRXOG DOORZ UHF\FOLQJ RI WKH FOHDU KLJKO\ DONDOLQH VXSHUQDWDQW ZKLFK ZRXOG KDYH D YROXPH HTXDO WR RI WKH WRWDO VOXGJH IORZ 7KLV ZRXOG UHGXFH WKH UHTXLUHG OLPH GRVDJH DQG DOVR UHGXFH WKH DPRXQW RI FDUERQ GLR[LGH UHTXLUHG IRU VOXGJH FDUERQDWLRQ DV ZHOO DV WKH VL]H RI WKH FDUERQDWLRQ EDVLQ 7KHVH DGYDQWDJHV PXVW EH ZHLJKHG DJDLQVW WKH FDSLWDO FRVW DQG RSHUDWLRQDO SUREOHPV UHVXOWLQJ IURP WKH DGGLWLRQDO XQLW UHTXLUHG 3ODQWV UHXVLQJ OLPH PXVW FDUERQDWH VOXGJH RQ D FRQn WLQXRXV EDVLV )RU D RQH KRXU FDUERQDWLRQ GHWHQWLRQ WLPH D ILIW\ PLOOLRQ JDOORQ SHU GD\ SODQW ZRXOG UHTXLUH RQO\ DQ JDOORQ FDUERQDWLRQ EDVLQ DVVXPLQJ WKH VOXGJH YROXPH LV b RI WKH WRWDO IORZ $ ILYH PLOOLRQ JDOORQ SHU GD\ SODQW UHFRYHULQJ PDJQHVLXP RQ D EDWFK EDVLV ZRXOG UHTXLUH D JDOORQ EDVLQ IRU WKH VDPH FRQGLWLRQV ,Q DGGLWLRQ DW OHDVW D JDOORQ VWRUDJH WDQN IRU WKH PDJQHVLXP FDUn ERQDWH VROXWLRQ ZRXOG EH QHFHVVDU\ 6OXGJH WKLFNHQLQJ SULRU WR FDUERQDWLRQ ZRXOG UHGXFH WKH VL]H RI ERWK WDQNV :KHUH OLPH UHFRYHU\ LV QRW SUDFWLFHG SODQWV WUHDWLQJ D PRGHUDWHO\ WXUELG ZDWHU FRXOG YDFXXP ILOWHU WKH FDUERQDWHG VOXGJH RQ DQ LQWHUPLWWHQW EDVLV $OO RI WKH FDUERQDWHG VOXGJH FRXOG EH UHF\FOHG XQWLO WKH VROLGV UHDFKHG DQ XQn GHVLUDEOH OHYHO 5HPRYDO RI WKH VROLGV E\ YDFXXP ILOWUDWLRQ

PAGE 136

ZRXOG DOORZ WKH F\FOH WR FRQWLQXH 7KH LQFUHDVHG VROLGV FRQFHQWUDWLRQ FRXOG SRVVLEO\ LQFUHDVH WKH FRDJXODWLRQ DQG VHWWOLQJ HIILFLHQF\ SDUWLFXODUO\ IRU ZDWHUV YHU\ ORZ LQ WXUELGLW\ 3KRWRJUDSKLF &RPSDULVRQ RI WKH )RUPDWLRQ RI )ORHV 3URGXFHG :LWK 0DJQHVLXP &DUERQDWH DQG :LWK $OXP ,Q DOO RI WKH FRDJXODWLRQ VWXGLHV WKH PDJQHVLXP FDUERQDWH IORHV IRUPHG PRUH UDSLGO\ DQG ZHUH JHQHUDOO\ ODUJHU LQ VL]H DQG PRUH GHQVH WKDQ WKH DOXP IORHV 3KRWRn JUDSKV WDNHQ GXULQJ FRDJXODWLRQ RI RUJDQLF FRORU ZLWK DOXP LQ RQH MDU DQG ZLWK 0J&2A LQ WKH RWKHU DOORZ FRPSDULVRQ RI ERWK WKH UDWH RI IORH IRUPDWLRQ DQG WKH SK\VLFDO FKDUDFWHUn LVWLFV RI WKH WZR IORHV IRUPHG 7KH UDZ ZDWHU ZKLFK ZDV FRDJXODWHG FRQWDLQHG PJ RI RUJDQLF FRORU ZLWK DQ DGMXVWHG DONDOLQLW\ DQG KDUGQHVV RI PJ 7KH GRVDJH RI DOXP UHTXLUHG IRU JRRG FRDJXODWLRQ ZDV HVWDEOLVKHG DV PJ 7KH RSWLPXP GRVDJH RI 0J&2A ZDV PJ K\GURn O\]HG ZLWK PJ RIK\GUDWHG OLPH $ GRVDJH RI PJ RI SRWDWR VWDUFK ZDV XVHG DV D IORFFXODQW ZLWK WKH PDJQHVLXP FDUERQDWH WUHDWPHQW )LYH PLQXWHV RI UDSLG PL[LQJ ILIWHHQ PLQXWHV RI VORZ PL[LQJ DQG WZHQW\ PLQXWHVn VHWWOLQJ ZDV SURYLGHG DV LQ SUHYLRXV MDU WHVWV )LJXUH VKRZV WKH ZDWHU EHIRUH DGGLWLRQ RI FRDJXODQWV DQG ILYH PLQXWHV DIWHU WKH FRDJXODQWV ZHUH DGGHG )LJXUH VKRZV WKH IORH IRUPHG VHYHQ PLQXWHV DIWHU FRDJXODQW DGGLWLRQ

PAGE 137

%HIRUH &RDJXODQW $GGLWLRQ )LYH 0LQXWHV $IWHU &RDJXODQW $GGLWLRQ ),* 3+272*5$3+,& &203$5,621 2) 0J& $1' $/80 )/2& '85,1* 5$3,' 0,;,1* ,1 7+( 5(029$/ 2) 25*$1,& &2/25 0J&2 XVHG LQ MDU RQ OHIW DOXP LQ MDU RQ ULJKWf

PAGE 138

),* 3+272*5$3+,& &203$5,621 2) 0J& $1' $/80 )/2& '85,1* )/2&&8/$7,21 ,1 7+( 5(029$/ 2) 25*$1,& &2/25 0J&2A XVHG LQ MDU RQ OHIW DOXUU XVHG LQ MDU RQ ULJKWf

PAGE 139

)LJXUH VKRZV SKRWRJUDSKV WDNHQ DIWHU WZR PLQXWHV VHWWOLQJ WLPH )LJXUH VKRZV VHYHUDO SKRWR PLFUR JUDSKV WDNHQ RI WKH DOXP DQG PDJQHVLXP IORHV XVLQJ D 0LFUR &DPHUDr 7KH PDJQHVLXP IORH ZKHQ PDJQLILHG WLPHV DSSHDUV PRUH GHQVH DQG JUDQXODU WKDQ WKH IORH IRUPHG XVLQJ DOXP )LJXUH VKRZV WKH IORHV PDJQLILHG WLPHV 7KH DOXP DSSHDUV JHODWLQRXV ZKLOH WKH PDJQHVLXP DSSHDUV HYHQ PRUH GHQVH DQG JUDQXODU &U\VWDOV RI FDOFLXP FDUERQDWH DUH VHHQ LQ )LJXUH VKRZLQJ PDJQHVLXP IORHV PDJQLILHG WLPHV 7KHVH SKRWRJUDSKV FOHDUO\ VKRZ WKH SK\VLFDO FKDUDFWHUn LVWLFV ZKLFK PDNH PDJQHVLXP FDUERQDWH D PRUH VDWLVIDFWRU\ FRDJXODQW WKDQ DOXP r/HLW] 2UWKRPDW 0LFUR &DPHUD ( /HLW] ,QF 1HZ
PAGE 140

),* 3+272*5$3+,& &203$5,621 2) 7+( 5$7( 2) 6(77/,1* )25 0J&2R $1' $/80 )/2&6 )250(' ,1 7+( 5(029$/ 2) 25*$1,& &2/25 0J& XVHG LQ MDU RQ OHIW DOXP XVHG LQ MDU RQ ULJKWf

PAGE 141

0DJQHVLXP &DUERQDWH )ORH $OXP )ORH ),* 3+2720,&52*5$3+6 2) $/80 $1' 0J& )/2& )250(' ,1 7+( 5(029$/ 2) 25*$1,& &2/25 0$*1,),(' 7,0(6

PAGE 142

0DJQHVLXP &DUERQDWH )ORH $OXP )ORH ),* 3+2720,&52*5$3+6 2) $/80 $1' 0J& )/2& )250(' ,1 7+( 5(029$/ 2) 25*$1,& &2/25 0$*1,),(' 7,0(6

PAGE 143

),* 0$*1(6,80 &$5%21$7( )/2& 0$*1,),(' 7,0(6 :,7+ &$/&,80 &$5%21$7( &5<67$/6 35(6(17

PAGE 144

&+$37(5 6800$5< $1' &21&/86,216 $IWHU H[WHQVLYH VWXG\ RI WKH XVH RI PDJQHVLXP FDUERQn DWH DV D FRDJXODQW IRU ERWK V\QWKHWLF DQG QDWXUDO ZDWHUV WKH IROORZLQJ FRQFOXVLRQV KDYH EHHQ UHDFKHG f 0DJQHVLXP FDUERQDWH K\GURO\]HG ZLWK OLPH LV DV HIIHFWLYH DV DOXP IRU WKH UHPRYDO RI ERWK WXUn ELGLW\ DQG RUJDQLF FRORU IURP VXUIDFH ZDWHUV 7KH IORHV IRUPHG DUH ODUJHU DQG KHDYLHU WKDQ DOXP IORHV DQG VHWWOH EHWWHU f $ PLQLPXP DPRXQW RI PDJQHVLXP K\GUR[LGH IORH LV UHTXLUHG IRU DFFHSWDEOH WUHDWPHQW RI HDFK ZDWHU f 7KLV UHTXLUHPHQW LV UHODWHG WR WKH SK\VLFDO DQG FKHPLFDO FKDUDFWHULVWLFV RI WKH ZDWHU ZLWK RUJDQLF FRORU KDYLQJ WKH JUHDWHVW HIIHFW 7KLV UHODWLRQVKLS GHWHUPLQHG IRU WKH QDWXUDO ZDWHUV LV 0LQLPXP 0J&2AnOOA2 GRVDJH LQJf WXUELGLW\f RUJDQLF FRORUf WRWDO DONDOLQLW\f I WRWDO KDUGQHVVf 7KH FRHIILFLHQWV IRU FRORU DQG WXUELGLW\ LQ WKH VHYHUDO QDWXUDO ZDWHUV XVHG ZHUH LQ H[FHOOHQW DJUHHPHQW ZLWK WKH FRHIILFLHQW LQ WKH HTXDWLRQV GHYHORSHG IRU V\QWKHWLF ZDWHUV

PAGE 145

f 1HLWKHU WKH EDVH H[FKDQJH FDSDFLW\ RI WKH FOD\ QRU WKH OHYHO RI WXUELGLW\ SUHVHQW KDG D VLJQL FDQW HIIHFW RQ WKH RSWLPXP FRDJXODQW GRVDJH f )RU HDFK ZDWHU VWXGLHG RQH VSHFLILF IORFFXODQW ZDV XVXDOO\ IRXQG VXSHULRU WRnDOO RWKHUV WHVWHG ,Q JHQHUDO KRZHYHU VRIW ZDWHUV UHVSRQGHG EHVW WR SSP GRVDJHV RI DOXP ZKHUHDV HLWKHU DFWLYDWHG VLOLFD RU SRWDWR VWDUFK SURGXFHG EHWWHU IORHV LQ KDUG ZDWHUV f 7KH PHDVXUHPHQW RI HOHFWURSKRUHWLF PRELOLW\ LV DQ HIIHFWLYH DQDO\WLFDO WRRO IRU HYDOXDWLQJ FRDJXn ODWLRQ HIILFLHQF\ SDUWLFXODUO\ LQ WKH FRDJXODn WLRQ RI RUJDQLF FRORU &KDUJH UHYHUVDO GRHV QRW UHVXOW LQ UHVWDELOL]DWLRQ RI WKH FROORLGDO SDUWLFOHV f ,Q WKH VWXG\ ZLWK QDWXUDO ZDWHUV FRQVLGHUDEO\ PRUH PDJQHVLXP ZDV IRXQG LQ VROXWLRQ DIWHU FRDJXODWLRQ WKDQ ZRXOG KDYH EHHQ SUHGLFWHG IURP WKHRUHWLFDO PDJQHVLXP K\GUR[LGH VROXELOLW\ GDWD 7KLV PD\ KDYH EHHQ GXH WR WKH IDFW WKDW WUXH HTXLOLEULXP ZDV QRW UHDFKHG LQ WKH UHODWLYHO\ VKRUW VHWWOLQJ SHULRGV DOORZHG $ VLJQLILFDQW GLIIHUHQFH ZDV IRXQG EHWZHHQ YDOXHV IRU UHVLGXDO PDJQHVLXP GHWHUPLQHG E\ ('7$ DQG WKRVH GHWHUn PLQHG E\ DWRPLF DEVRUSWLRQ VSHFWURSKRURPHWU\

PAGE 146

f $ VHULHV RI JUDSKV PDNHV SRVVLEOH WKH GHWHUPLQDn WLRQ RI WKH RSWLPXP FRDJXODWLRQ S+ DQG WKH FKHPLFDO WUHDWPHQW FRVW IRU OLPH &2M DQG 0J&2` EDVHG RQ MDU WHVW UHVXOWV :KLOH WKH FRVW GDWD DUH EDVHG RQ FRQVHUYDWLYH HVWLPDWHV VLJQLILFDQW VDYLQJV LQ WUHDWPHQW FRVWV DUH LQGLFDWHG IRU PRVW ZDWHUV ZLWKRXW FRQVLGHULQJ WKH PDQ\ RWKHU EHQHILWV UHVXOWLQJ IURP WKH XVH RI WKLV QHZ WUHDWPHQW SURFHVV f &DUERQDWLRQ UHFRYHUHG QHDUO\ b RI WKH PDJQHVLXP n K\GUR[LGH IURP WKH VOXGJH ZLWKrDQ LQVLJQLILFDQW DPRXQW RI FDOFLXP VROXELOL]DWLRQ 5HOHDVH RI FRDJXODWHG FRORU LV QRW D SUREOHP ZKHUH WKH DYHUDJH FRORU LQ WKH ZDWHU LV OHVV WKDQ )LOWHUDELOLW\ RI WKH FDUERQDWHG VOXGJH ZLOO QRW EH D SUREOHP IRU PRVW ZDWHUV +RZHYHU LQn WKH FDVH RI YHU\ VRIW ZDWHUV WKH VOXGJH ZLOO EH ORZ LQ &D&2A DQG LW PD\ EH QHFHVVDU\ WR DGG D V\QWKHWLF RUJDQLF SRO\HOHFWURO\WH RU DQ LQHUW ILOWHU DLG WR SURYLGH VDWLVIDFWRU\ ILOWHUDELOLW\ f 7KH XVH RI PDJQHVLXP FDUERQDWH LQ PRVW FDVHV SURn GXFHV D WUHDWHG ZDWHU ZLWK VXSHULRU FKHPLFDO FKDUDFWHULVWLFV FRPSDUHG WR ZDWHU WUHDWHG ZLWK DOXP :KHQ PDJQHVLXP LV XVHG WKH WUHDWHG ZDWHUV KDYH DONDOLQLWLHV UDQJLQJ IURP WR PJ JLYLQJ VRIW ZDWHUV VXIILFLHQW DONDOLQLW\ IRU FDOFLXP FDUERQDWH VWDELOL]DWLRQ RU VRIWHQLQJ ZDWHUV KLJK LQ FDUERQDWH KDUGQHVV

PAGE 147

&+$37(5 5(&200(1'$7,21 )25 )857+(5 678'< 7KH SUREOHP RI QHJOHFWLQJ LPSRUWDQW UHVHDUFK DUHDV LQ QHZ WHFKQRORJLFDO VWXGLHV ZDV GLVFXVVHG LQ WKH ,QWURGXFWLRQ :KLOH PDQ\ QHZ DQG H[FLWLQJ ILQGLQJV DUH UHSRUWHG DV D UHn VXOW RI WKLV ZRUN PDQ\ PRUH FKDOOHQJLQJ DUHDV RI UHVHDUFK KDYH EHHQ H[SRVHG )RU GLVFXVVLRQ SXUSRVHV WKHVH VWXGLHV DUH GLYLGHG LQWR DSSOLHG DQG EDVLF UHVHDUFK VWXGLHV $ WZR \HDU UHVHDUFK SURMHFW LV SODQQHG WR LPSOHPHQW WKLV QHZ SURFHVV ILUVW LQ D JDOORQ SHU PLQXWH SLORW SODQW DQG ODWHU LQ D PLOOLRQ JDOORQ SHU GD\ PXQLFLSDO ZDWHU SODQW 7KLV VWXG\ LV UHTXLUHG EHIRUH WKLV QHZ SURFHVV FDQ EH SODFG LQWR XVH LQ KXQGUHGV RI ZDWHU SODQWV WKURXJKn RXW WKH FRXQWU\ 7KH REMHFWLYHV RI WKLV SURMHFW DUH WR VWXG\ RU HYDOXDWH WKH IROORZLQJ f 2SHUDWLRQDO SURFHGXUHV DQG SUREOHPV LQ WKH XVH RI WKLV QHZ SURFHVV WR WUHDW D VRIW FRORUHG KLJKO\ WXUELG ULYHU ZDWHU VXEMHFW WR ZLGH YDULDWLRQV LQ FKHPLFDO DQG SK\VLFDO FKDUDFWHULVWLFV f (FRQRPLF FRQVLGHUDWLRQV RI DOO FRVWV LQYROYHG LQ WKH XVH RI WKLV QHZ SURFHVV LQFOXGLQJ SURMHFWHG FDSLWDO H[SHQGLWXUHV IRU SODQW PRGLILFDWLRQV

PAGE 148

f ,QVWUXPHQWDWLRQ DQG FRQWURO RI WKH FDUERQDWLRQ DQG FRDJXODQW UHF\FOH SURFHVVHV f 6OXGJH ILOWHUDELOLW\ DQG WKH PHWKRGV DYDLODEOH IRU LPSURYHPHQW 7KH HIIHFW RI LQFUHDVLQJ KDUGn QHVV RQ VOXGJH ILOWHUDELOLW\ ZLOO EH VWXGLHG E\ DGMXVWLQJ WKH UDZ ZDWHU FKDUDFWHULVWLFV RYHU D IDLUO\ ZLGH UDQJH f 7KH HIIHFW RI WKLV QHZ SURFHVV RQ WKH IXWXUH GHVLJQ RI IORFFXODWLRQ DQG VHWWOLQJ EDVLQV /DERUDWRU\ REVHUYDWLRQV LQGLFDWH WKDW OHVV PL[n LQJ DQG VHWWOLQJ WLPH LV UHTXLUHG DV FRPSDUHG ZLWK DOXP WUHDWPHQW f 7KH EHQHILWV UHVXOWLQJ IURP WKH LQFUHDVH LQ DONDOLQLW\ DQG KDUGQHVV UHVXOWLQJ IURP WKH WUHDWPHQW RI YHU\ VRIW ZDWHU XVLQJ PDJQHVLXP FDUERQDWH &RPSDULVRQ ZLOO EHr PDGH RI WKH FRUn URVLRQ RU GHSRVLWLRQ SRWHQWLDO RI ZDWHUV WUHDWHG ZLWK PDJQHVLXP FDUERQDWH DQG ZLWK DOXP f %DFWHULRORJLFDO UHPRYDOV LQ HDFK XQLW WR GHWHUn PLQH LI SUHFKORULQDWLRQ LV UHTXLUHG f ,URQ DQG PDQJDQHVH UHPRYDO WR GHWHUPLQH LI WKH KLJK S+ LV VXIILFLHQW WR SUHFLSLWDWH WKH WZR PHWDOV FRPSOHWHO\ 0DJQHVLXP FDUERQDWH RIIHUV FRQVLGHUDEOH SURPLVH LQ WKH WUHDWPHQW RI PXQLFLSDO DQG LQGXVWULDO ZDVWHV 0DJQHVLXP IRUPV D YHU\ LQVROXEOH FRPSOH[ PDJQHVLXP DPPRQLXP SKRVSKDWH ZKLFK ZKHQ SUHFLSLWDWHG ZLWK 0J& DQG OLPH FRXOG SURYLGH

PAGE 149

WHUWLDU\ VHZDJH WUHDWPHQW DW DQ DFFHSWDEOH FRVW 6LPXOWDQHn RXVO\ FRORU WXUELGLW\ DQG ELRORJLFDO DQG FKHPLFDO R[\JHQ GHPDQG ZRXOG EH UHGXFHG WR ORZ DQG KRSHIXOO\ WR VDWLVIDFWRU\ OHYHOV /LPH DQG PDJQHVLXP YDOXHV FDQ EH UHFRYHUHG DQG UHF\FOHG DV LQ ZDWHU WUHDWPHQW WKXV UHGXFLQJ WKH FKHPLFDO FRVWV $ UHVHDUFK SURMHFW WR LQYHVWLJDWH WKLV DSSOLFDWLRQ LV SODQQHG DQG ZLOO VRRQ EHJLQ 0DJQHVLXP FDUERQDWH WUHDWPHQW RI LQGXVWULDO ZDVWHV KLJK LQ FRORU VXFK DV WKH SXOS DQG SDSHU ZDVWHV WDQQHU\ ZDVWHV WH[WLOH G\H ZDVWHV HWF DSSHDUV YHU\ DWWUDFWLYH 0RVW LQGXVWULDO SODQWV KDYH DQ XQOLPLWHG VXSSO\ RI FDUERQ GLR[LGH LQ WKH VWDFN JDVHV DQG PDQ\ DOUHDG\ UHFRYHU OLPH $ PHWKRG RI FRDJXODQW UHF\FOLQJ IRU WKHVH KLJKO\ FRORUHG ZDVWHV VKRXOG EH GHYHORSHG 7KLV PLJKW EH DFFRPSOLVKHG E\ WKH DGGLWLRQ RI D VWURQJ R[LGDQW WR WKH UHF\FOH VWUHDP DIWHU ZKLFK WKH PDJQHVLXP FRXOG EH UHFRYHUHG E\ SUHFLSLWDWLRQ DV PDJQHVLXP FDUERQDWH WULK\GUDWH 7KH SUHFLSLWDWHG PDJQHVLXP FRXOG EH OLJKWO\ FDOFLQHG r& WR EXUQ RII WKH RUJDQLFV DQG WKHQ UHXVHG 7KH UHOHDVH RI DEVRUEHG XQGHVLUDEOH FRQVWLWXHQWV E\ FDUERQDWLRQ IRU FRDJXODQW UHFRYHU\ LV LQ QHHG RI IXUWKHU VWXG\ )RU DQ LQGXVWULDO ZDVWH WKLV PLJKW LQFOXGH KHDY\ PHWDOV ZKLOH WKH UHOHDVH RI LURQ DQG PDQJDQHVH ZRXOG EH RI FRQFHUQ LQ ZDWHU WUHDWPHQW %DVLF UHVHDUFK RQ WKH FKHPLFDO LQWHUDFWLRQV EHWZHHQ PDJQHVLXP DQG FRPSOH[LQJ OLJDQGV VKRXOG EH XQGHUWDNHQ &RPSOH[DWLRQ FKHODWLRQ DQG LRQ SDLU IRUPDWLRQ VKRXOG EH

PAGE 150

VWXGLHG 7KHVH PHFKDQLVPV FRXOG SRVVLEO\ H[SODLQ WKH ORZHU PDJQHVLXP YDOXHV UHSRUWHG E\ ('7$ WLWUDWLRQ DV ZHOO DV SURn YLGH LQIRUPDWLRQ DV WR KRZ WKLV SUREOHP FDQ EH HOLPLQDWHG ,W LV SRVVLEOH WKDW WKH VWDELOLW\ FRQVWDQWV IRU VRPH RI WKHVH PDJQHVLXPOLJDQG FRPSOH[HV DUH JUHDWHU WKDQ WKDW IRU WKH ('7$PDJQHVLXP FRPSOH[ XQGHU FHUWDLQ FRQGLWLRQV 3RVn VLEO\ D VWURQJ R[LGDQW ZLOO GHVWUR\ WKHVH FRPSOH[HV DOORZLQJ DQ DFFXUDWH WLWUDWLRQ RI WKH PDJQHVLXP E\ ('7$ 7KH LGHQWLILFDWLRQ RI YDULRXV PDJQHVLXP VSHFLHV IRUPHG DW KLJK S+ LV DQ DUHD IRU IXUWKHU UHVHDUFK 3RVVLEO\ SRO\QXFOHDU VWURQJO\ K\GUDWHG K\GURO\VLV SURGXFWV IRUP DV KDV EHHQ SURSRVHG IRU DOXPLQXP $GGLWLRQDO VWXG\ RI WKH HIIHFW RI ERWK DQLRQV DQG FDWLRQV RQ WKH PRELOLW\ RI PDJQHn VLXP K\GUR[LGH IORHV VKRXOG EH FRQGXFWHG 7KH UHPRYDO RI WDVWHV DQG RGRUV LV D VHULRXV SUREOHP IDFHG E\ SUDFWLFDOO\ DOO PXQLFLSDO ZDWHU WUHDWPHQW SODQWV WUHDWLQJ VRIW VXUIDFH ZDWHUV 7KH HIIHFW RI WKH YHU\ KLJK S+ YDOXHV XVHG LQ FRDJXODWLRQ ZLWK PDJQHVLXP FDUERQDWH DQG OLPH RQ WKH UHPRYDO RI WKHVH WDVWHV DQG RGRUV E\ DFWLYDWHG FDUERQ DQG E\ RWKHU PHWKRGV VKRXOG EH FDUHIXOO\ VWXGLHG

PAGE 151

$33(1',;

PAGE 152

7$%/( &$/&8/$7(' 327(17,$/ 352'8&7,21 2) 0J&2R+" %< $0(5,&$1 &,7,(6 &LW\ 0J :DWHU WUHDWHG GDLO\ 0J P n XQWUHDWHG ZDWHU SSP $PRXQW UHPRYHG SSP $QQXDO SURGXFWLRQ RI 0J&2R +2 WRQV $QQXDO JURV UHYHQXH DW S SHU OE ,QGLDQDSROLV 'HV 0RLQHV .DQVDV &LW\ 0R n .DQVDV &LW\ .DQ )OLQW 0LFK [ /DQVLQJ 0LFK  0LQQHDSROLV 6WL 3DXO 6W /RXLV 2PDKD n &LQFLQQDWL &ROXPEXV 2NODKRPD &LW\ r f f )RUW :D\QH ,QG [ f 'D\WRQ 2KLR 6DQ 'LHJR [ 6W /RXLV &R :& $XVWLQ 7H[ $ 1HZ 2UOHDQV [ :LFKLWD .DQ

PAGE 153

7$%/( &RQWLQXHGf &RPPHQWV 0RUVH SODQW PJG 0Jn [ 'XEOLQ SODQW PJG 0J [ %RWK SODQWV PJG 0Jnr [ 3UHIHUUHG PHWKRG ZRXOG SUREDEO\ UHFRYHU DW 'XEOLQ RQO\ DQG FDOFXODWHG RQ WKLV EDVLV f2NODKRPD &LW\ KDV WKUHH WUHDWPHQW SODQWV /DNH 2YHUKRO]HU PJG 0J /DNH +HIQHU PJG 0J /DNH 'UDSHU PJG 0J 6R FDOFXODWLRQV EDVHG RQ UHFRYHU\ DW +HIQHU SODQW RQO\ 6W /RXLV &RXQW\ :DWHU &R KDV IRXU SODQWV GHULYLQJ ZDWHU IURP WKH 0LVVRXUL 5LYHU RQH IURP WKH 0LQLPDF 5LYHU &DOFXODWLRQ EDVHG RQ ODUJHVW SODQW RQO\ ([WUDSRODWHG IURP GDWD

PAGE 154

7$%/( &$/&8/$7,216 2) 327(17,$/ &2168037,21 2) 0J&2+ %< :$7(5 75($70(17 3/$176 ,1 7+( 81,7(' 67$7(6r 3ODQWV 6HUYLQJ 3HRSOH 8VH $OXP 3ODQWV 6HUYLQJ 3HRSOH 8VH ,URQ 6DOWV 3ODQWV 6HUYLQJ 3HRSOH 8VH $O RU )H [ f SHRSOH [ [ f JDO \U [ A JD \U JDO LUJ\U SSP 0J&2A K OEVPJ b PDNH XS OEVPJ [ OEV ,OO OEV WRQV\U 4 ILOWUDWLRQ SODQWV EHORZ PJG SHRSOHf b 7UHDW PJG PJG b 7UHDW PJG PJG b 7UHDW  PJG PJG 7RWDO PJG PJG [ OEVPJ [ GD\V OEV OEV WRQV\U 7RWDO RI DOO SODQWV WRQV\U EDVLV &RUUHFWHG IRU SURGXFWLRQ WRQV\U r)URP 863+6 VXPPDU\ RI PXQLFLSDO ZDWHU IDFLOLWLHV LQ &RPPXQLWLHV RI RU PRUH

PAGE 155

5()(5(1&(6 +XGVRQ + ( -U +RZ 6HULRXV LV WKH 3UREOHP" 3URF WK 6DQ (QJ &RQI RI ,OOLQRLV 8UEDQD ,OOLQRLV f 1HXEDXHU : 5 :DVWH $OXP 6OXGJH 7UHDWPHQW $::$ f 2n%ULHQ ( ) DQG *HUH % $ :DVWH $OXP 6OXGJH &KDUDFWHULVWLFV DQG 7UHDWPHQW 1< 6WDWH 'HSW RI +HDOWK 5HVHDUFK 5HSRUW 1R f 5XVVHOPDQ + % &KDUDFWHULVWLFV RI :DWHU 7UHDWPHQW 3ODQW :DVWHV 3URF WK 6DQ (QJ &RQI ,OOLQRLV 8UEDQD ,OOLQRLV f 0F:DLQ 'HZDWHULQJ E\ /DJRRQV DQG 'U\LQJ %HGV 3URF WK 6DQ (QJ &RQI RI ,OOLQRLV 8QLYHUVLW\ RI ,OOLQRLV 8UEDQD ,OOLQRLV f 'RH 3 : $ 5HSRUW RQ WKH 'LVSRVDO RI 6OXGJH IURP :DWHU 7UHDWPHQW 3ODQWV %ULWLVK :DWHU :RUNV $VVRF -XELOHH 7UDYHOLQJ 6FKRODUVKLS f
PAGE 156

)XMLWD + 7RN\RnV $VDND 3XULILFDWLRQ 3ODQW :DWHU DQG 6HZDJH :RUNV 0DUFK f )XOWRQ 3 'LVSRVDO RI :DVWHZDWHU IURP :DWHU )LOn WUDWLRQ 3ODQWV -‘ $::$ -XO\ f $PHULFDQ :DWHU :RUNV $VVRFLDWLRQ 5HVHDUFK )RXQGDWLRQ 'LVSRVDO RI :DVWHV IURP :DWHU 7UHDWPHQW 3ODQWV $XJXVW :DWHU 3ROOXWLRQ &RQWURO 5HVHDUFK 6HULHVf %ODFN $ 3 & ) :HUW] DQG & 5 +HQU\ 5HFDOFLQn LQJ 6RIWHQLQJ 6OXGJH DW 0LDPL )ORULGD :DWHU :RUNV (QJ 0DUFK f 0DQXDO IRU :DWHU :RUNV 2SHUDWRUV 7H[DV :DWHU DQG 6HZDJH :RUNV $VVRF f 'RHUPHU $ ) : +ROEURRN DQG : )RUWQHU 7KH %LFDUERQDWH 3URFHVV IRU WKH 3URGXFWLRQ RI 0DJQHVLXP 2[LGH 7HFKQLFDO 3DSHU 8 6 'HSDUWPHQW RI WKH ,QWHULRU 8 6 *RY 3ULQWLQJ 2IILFH (LGVQHVV ) $ DQG $ 3 %ODFN &DUERQDWLRQ RI :DWHU 6RIWHQLQJ 3ODQW 6OXGJH -‘ $::$ f )OHQWMH 0 ( &DOFLXP DQG 0DJQHVLXP +\GUDWHV $::$ f /HFRPSWH $ 5 :DWHU 5HFODPDWLRQ E\ ([FHVV /LPH 7UHDWPHQW RI (IIOXHQW 7$33, 'HFHPEHU f %ODFN $ 3 DQG : 7 (LIIHUW 5HFRYHU\ RI &DOFLXP DQG 0DJQHVLXP 9DOXHV IURP /LPH6RGD 6RIWHQLQJ 6OXGJH DW 'D\WRQ 2KLR 2KLR 0LFKLJDQ 3ROOXWLRQ &RQWURO &RQI 0D\ f +RXVWRQ $ & WK 5HVHDUFK 5SW RI 0HWURSROLWDQ :DWHU %RDUG /RQGRQ (QJODQG +RRYHU & 3 :DWHU 6RIWHQLQJ DV DQ $GMXQFW WR :DWHU 3XULILFDWLRQ $::$ -XQH f 5LHKO 0 / + + :HLVHU DQG 5 7 5KHLQV (IIHFW RI /LPH 7UHDWHG :DWHU XSRQ 6XUYLYDO RI %DFWHULD $::$ 0D\ f &KDXGKXUH 0DOH\ DQG 5 6 (QJHOEUHFKW nn5HPRYDO RI 9LUXVHV IURP :DWHU E\ &KHPLFDO &RDJXODWLRQ DQG )ORFFXODWLRQ $::$ 6HSW f

PAGE 157

%HUJ *HUDOG 5 % 'HDQ DQG 5 'DKOLQJ 5HPRYDO RI 3ROLRYLUXV )URP 6HFRQGDU\ (IIOXHQWV E\ /LPH )ORFFXODWLRQ DQG 5DSLG 6DQG )LOWUDWLRQ $::$ )HEUXDU\ f 3HDUVRQ 5 +DUG DQG 6RIW $FLGV DQG %DVHV $PHULFDQ &KHP 6RF f /DLWLQHQ + $ &KHPLFDO $QDO\VLV 0F*UDZ+LOO %RRN &RPSDQ\ ,QF 1HZ
PAGE 158

+HU] : DQG 0XKV 1+D& 0J&OQ 1+ f n8EHU GDV *OHLFKJHZLFKW 0J2+f 2+ = $QRUJ &KHP f .RKOUDXVFK ) DQG 5RVH ) 'LH /RVKOLFKNHLW HLQLJHU VFKZHU ORVOLFKHQ .RUSHU LP :DVVHU KHXUWHLOW DXV GHU HOHNWULVFKHQ /HLWXQJVIDKLJNHLW GHU /RVXQJHQ A 3K\VLN &KHP f /RYHQ 0 &KHPLVKHV *OHLFK JXYLFKW LQ $PPRQLD NDOLVFKHQ 0DJQHVLXP VDO] ORVHQJHQ = $QRUJ &KHP f /DUVRQ 7 ( /DQH 5 : DQG 1HII & + 6WDELOL]Dn WLRQ RI 0DJQHVLXP +\GUR[LGH LQ WKH 6ROLGV&RQWDFW 3URFHVV -$::$ 'HF f 6WXPP :HUQHU DQG 0RUJDQ -DPHV $TXDWLF &KHPLVWU\ ,QWHUVFLHQFH 1HZ
PAGE 159

%DUWRZ ( DQG 3HWHUVRQ % (IIHFW RI 6DOWV RQ WKH 5DWH RI &RDJXODWLRQ DQG WKH 2SWLPXP 3UHFLSLWDWLRQ RI $OXP )ORH ,QG (QJ &KHP f 3DFNKDP 5 ) 6RPH 6WXGLHV RI WKH &RDJXODWLRQ RI 'LVSHUVHG &OD\V ZLWK +\GURO\]LQJ 6DOWV &ROORLG 6FLHQFH f 3LOOHSRYLFK % %ODFN $ 3 (LGVHVV ) $ DQG 6WHDUQV 7 : (OHFWURSKRUHWLF 6WXGLHV RI :DWHU &RDJXODWLRQ $::$ f %ODFN $ 3 DQG 5LFH 2ZHQ )RUPDWLRQ RI )ORH E\ $OXPLQXP 6XOIDWH ,QG (QJ &KHP f 6WXPP : DQG 0RUJDQ &KHPLFDO $VSHFWV RI &RDJXn ODWLRQ $::$ f 'LVFXVVLRQ S %ODFN $ 3 0DWWVRQ 6 &DWDSKRUHVLV DQG WKH (OHFWULFDO 1HXWUDOLn ]DWLRQ RI &ROORLGDO 0DWHULDO 3K\ &KHP f &KULVWPDQ 5 7 DQG *KDVVHPL 0 &KHPLFDO 1DWXUH RI 2UJDQLF &RORU LQ :DWHU $::$ f %ODFN $ 3 DQG &KULVWPDQ 5 7 &KHPLFDO &KDUDFWHULVn WLFV RI &RORUHG 6XUIDFH :DWHUV $::$ f %LUJH ( $ DQG -XGD\ & 3DUWLFXODWH DQG 'LVVROYHG 2UJDQLF 0DWWHU LQ ,QODQG /DNHV (FRO 0RQRJUDSKV f *MHVVLQJ ( 7 8OWUDILOWUDWLRQ RI $TXDWLF +XPXV &RPPXQLFDWLRQ LQ (QYLURQPHQWDO 6FLHQFH DQG 7HFKQRORJ\ 0D\ f .LWDQR < .]QRPRUL 1 DQG 7RNX\DPD $ ,QIOXHQFH RI 2UJDQLF 0DWWHU RQ ,QRUJDQLF 3UHFLSLWDWLRQ 2UJDQLF 0DWWHU LQ 1DWXUDO :DWHUV 8 RI $ODVND 6\PSRVLXP 6KDSLUR (IIHFW RI
PAGE 160

%ODFN $ 3 6LQJOH\ ( :KLWWOH 3 DQG 0DXOGLQJ 6 6WRLFKLRPHWU\ RI WKH &RDJXODWLRQ RI &RORU &DXVLQJ 2UJDQLF &RPSRXQGV ZLWK )HUULF 6XOIDWH $::$ 2FW f 9DQ 2OSKHQ + $Q ,QWURGXFWLRQ WR &OD\ &ROORLGDO &KHPLVWU\ ,QWHUVFLHQFH 1HZ
PAGE 161

=HWD0HWHU 0DQXDO =HWD 0HWHU ,QF 6HFRQG (GLWLRQ 1HZ
PAGE 162

%,2*5$3+,&$/ 6.(7&+ &OLII *UHHQ 7KRPSVRQ ZDV ERUQ -XQH DW 1HZ 2UOHDQV /RXLVLDQD +H JUDGXDWHG IURP 6LGQH\ /DQLHU +LJK 6FKRRO 0RQWJRPHU\ $ODEDPD LQ -XQH RI ,Q 'HFHPEHU RI KH UHFHLYHG WKH GHJUHH RI %DFKHORU RI 6FLHQFH ZLWK D PDMRU LQ &LYLO (QJLQHHULQJ IURP $XEXUQ 8QLYHUVLW\ )URP XQWLO KH ZDV HPSOR\HG E\ WKH $ODEDPD 6WDWH +HDOWK 'HSDUWPHQW DV D 3XEOLF +HDOWK (QJLQHHU LQ WKH 'LYLVLRQ RI 3XEOLF :DWHU 6XSSOLHV +H WRRN HGXFDWLRQDO OHDYH RI DEVHQFH IRU RQH \HDU WR HQUROO LQ WKH *UDGXDWH 6FKRRO DW *HRUJLD ,QVWLWXWH RI 7HFKQRORJ\f +H UHFHLYHG WKH GHJUHH RI 0DVWHU RI 6FLHQFH ZLWK D PDMRU LQ 6DQLWDU\ (QJLQHHULQJ LQ $XJXVW RI )URP -XQH XQWLO WKH SUHVHQW WLPH KH KDV SXUVXHG KLV ZRUN WRZDUG WKH GHJUHH RI 'RFWRU RI SKLORVRn SK\ &OLII *UHHQ 7KRPSVRQ LV PDUULHG WR WKH IRUPHU 3DWWL -HDQ $QGHUVRQ DQG LV WKH IDWKHU RI WZR FKLOGUHQ

PAGE 163

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ LA6GZDUG nRIHVVRU RI (QYLURQPHQWDO (QJLQHHULQJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHFUHH RI 'RFWRU RI 3KLORVRSK\ 3DWULFN /%UH]RQLN $VVRFLDWH 3URIHVVRU RI (QYLURQPHQWDO (QJ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV DfGLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ )U %ODFN 3URIHVVRU (PHUWLV RI (QYLURQPHQWDO (QJU

PAGE 164

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH 'HDQ RI WKH &ROOHJH RI (QJLQHHULQJ DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ -XQH 9 'HDQ *UDGXDWH 6FKRRO

PAGE 165

3DJH RI ,QWHUQHW 'LVWULEXWLRQ &RQVHQW $JUHHPHQW ,Q UHIHUHQFH WR WKH IROORZLQJ GLVVHUWDWLRQ $87+25 7KRPSVRQ &OLII f 7,7/( 0DJQHVLXP FDUERQDWH D UHF\FOHG FRDJXODQW IRU ZDWHU WUHDWPHQW UHFRUG QXPEHU f 38%/,&$7,21 '$7( $ AYY \ DV FRS\ULJKW KROGHU IRU WKH DIRUHPHQWLRQHG GLVVHUWDWLRQ KHUHE\ JUDQW VSHFLILF DQG OLPLWHG DUFKLYH DQG GLVWULEXWLRQ ULJKWV WR WKH %RDUG RI 7UXVWHHV RI WKH 8QLYHUVLW\ RI )ORULGD DQG LWV DJHQWV DXWKRUL]H WKH 8QLYHUVLW\ RI )ORULGD WR GLJLWL]H DQG GLVWULEXWH WKH GLVVHUWDWLRQ GHVFULEHG DERYH IRU QRQSURILW HGXFDWLRQDO SXUSRVHV YLD WKH ,QWHUQHW RU VXFFHVVLYH WHFKQRORJLHV 7KLV LV D QRQH[FOXVLYH JUDQW RI SHUPLVVLRQV IRU VSHFLILF RIIOLQH DQG RQOLQH XVHV IRU DQ LQGHILQLWH WHUP 2IIOLQH XVHV VKDOO EH OLPLWHG WR WKRVH VSHFLILFDOO\ DOORZHG E\ )DLU 8VH DV SUHVFULEHG E\ WKH WHUPV RI 8QLWHG 6WDWHV FRS\ULJKW OHJLVODWLRQ FI 7LWOH 86 &RGHf DV ZHOO DV WR WKH PDLQWHQDQFH DQG SUHVHUYDWLRQ RI D GLJLWDO DUFKLYH FRS\ 'LJLWL]DWLRQ DOORZV WKH 8QLYHUVLW\ RI )ORULGD WR JHQHUDWH LPDJH DQG WH[WEDVHG YHUVLRQV DV DSSURSULDWH DQG WR SURYLGH DQG HQKDQFH DFFHVV XVLQJ VHDUFK VRIWZDUH 7KLV JUDQW RI SHUPLVVLRQV SURKLELWV XVH RI WKH GLJLWL]HG YHUVLRQV IRU FRPPHUFLDO XVH RU SURILW 6LJQDWXUH RI &RS\ULJKW +ROGHU ))n t 3ULQWHG RU 7\SHG “DPH RI &RS\ULJKW +ROGHU/LFHQVHH KWWSVPDLOFKPHRPH[FKDQJH&7KRPSVR,QER[8)b/LEUDULHV'LJLWDOb'LVVHUWDWL