Citation
Relationships among hydrosoil, water chemistry, transparency, chlorophyll a, and submersed macrophyte biomass

Material Information

Title:
Relationships among hydrosoil, water chemistry, transparency, chlorophyll a, and submersed macrophyte biomass
Added title page title:
Macrophyte biomass
Creator:
Langeland, Kenneth A. ( Dissertant )
Haller, William T. ( Thesis advisor )
Bowes, George E. ( Reviewer )
Canfield, Daniel E. ( Reviewer )
Graetz, Donald A. ( Reviewer )
Sutton, David L. ( Reviewer )
Fry, Jack L. ( Degree grantor )
Publisher:
University of Florida
Publication Date:
Language:
English
Physical Description:
xiii, 143 leaves : ill. ; 28 cm.

Subjects

Subjects / Keywords:
Agronomy thesis, Ph.D.
Aquatic weeds -- Florida ( lcsh )
Dissertations, Academic -- Agronomy -- UF
Lake ecology -- Florida ( lcsh )
Phytoplankton -- Florida ( lcsh )
Water quality -- Florida ( lcsh )
Lake Okahumpka ( local )
Nutrients ( jstor )
Macrophytes ( jstor )
Biomass ( jstor )
Spatial Coverage:
United States -- Florida

Notes

Abstract:
The role of submersed macrophytes in nutrient cycling and the subsequent influences on water quality parameters and phytoplankton biomass are poorly understood. The relationships were, therefore, studied among concentrations of N, P, K, Ca, Mg, Fe, and Cu in water and hydrosoil, chlorophyll, a concentration in water, transparency, and submersed macrophyte biomass in seven Florida lakes, which ranged from oligo-mesotrophic to eutrophic. The growth response of hydrilla (hyrdrilla verticillata) to extractable N, P, K, Ca, Mg, Fe, and Cu concentrations in preparing rooting media was also studied under laboratory conditions. Hydrilla shoot weight increased linearly under laboratory conditions as nutrient concentrations increased in the rooting media, suggesting that growth was limited by nutrient availability to the roots. high correlation among the nutrients prevented determination of a single limiting nutrient. Concentrations of P and K in rooting media were positively related to concentrations in the hydrilla tissue. Above 153 ug P/g and 8 ug K/g in the rooting media, concentrations of P and K in the hydrilla tissue remained constant. Concentrations of N, Ca, Mg, Fe, and Cu remained constant throughout the range of these nutrients in the rooting media. Under natural conditions, there was no significant effect of hydrosoil nutrient concentrations on submersed macrophyte biomass among lakes in January through February 1981 when biomass ranged from 12 to 51 g dry weight/m^2. In September and October 1981 when biomass ranged from 12 to 240 g dry weight/m^2, K had a significant positive effect on biomass; however, only 4% of the variability could not be explained. Hydrosoil concentrations of N, P, K, Ca, and Mg explained small amounts of macrophyte biomass variability within lakes. The vertical distribution of submersed macrophytes was directly influenced by water transparency and basin morphometry. Submersed macrophytes were absent where water depths prevent sufficient light for plant growth from reaching the lake bottom. This depth occurred where 0.7% to 7% of full sunlight (PAR) was transmitted. Submersed macrophyte biomass was directly related to lake trophic state. However, where high macrophyte densities occurred, P and chlorophyll a concentrations were lower than predicted for lakes in the physiographic regions. The data suggest that high macrophyte biomass suppresses phytoplankton production by acting as a P sink and results in increased transparency. using measurements of macrophyte biomass and nutrient content, changes in water conditions after release of this nutrient pool can be predicted.
Thesis:
Thesis (Ph.D.)--University of Florida, 1982.
Bibliography:
Includes bibliographic references (leaves 136-142).
General Note:
Typescript.
General Note:
Vita.
Statement of Responsibility:
by Kenneth A. Langeland.

Record Information

Source Institution:
University of Florida
Holding Location:
University of Florida
Rights Management:
Copyright [name of dissertation author]. Permission granted to the University of Florida to digitize, archive and distribute this item for non-profit research and educational purposes. Any reuse of this item in excess of fair use or other copyright exemptions requires permission of the copyright holder.
Resource Identifier:
025433121 ( ALEPH )
09490655 ( OCLC )
ABW4356 ( NOTIS )

Aggregation Information

UFIR:
Institutional Repository at the University of Florida (IR@UF)
UFETD:
University of Florida Theses & Dissertations
IUF:
University of Florida

Downloads

This item has the following downloads:

UF00084170_00001 ( .pdf )

00006.txt

00026.txt

00047.txt

00080.txt

UF00084170_00001_pdf.txt

00058.txt

00105.txt

00060.txt

00054.txt

00092.txt

00051.txt

00055.txt

00061.txt

00153.txt

00137.txt

00067.txt

00142.txt

00037.txt

00033.txt

00100.txt

00096.txt

00145.txt

00108.txt

00062.txt

00002.txt

00112.txt

00146.txt

00076.txt

00057.txt

00148.txt

00158.txt

00087.txt

00066.txt

00073.txt

00075.txt

00007.txt

00127.txt

00027.txt

00063.txt

00114.txt

00091.txt

00071.txt

00120.txt

00059.txt

00136.txt

00150.txt

00042.txt

00012.txt

00156.txt

00125.txt

00023.txt

00039.txt

00122.txt

00133.txt

00072.txt

00081.txt

00020.txt

00038.txt

00151.txt

00101.txt

00011.txt

00034.txt

00010.txt

00083.txt

00157.txt

00143.txt

00024.txt

00110.txt

00093.txt

00117.txt

00152.txt

00022.txt

00119.txt

00111.txt

00154.txt

00019.txt

00126.txt

00135.txt

00070.txt

00032.txt

00138.txt

00068.txt

00107.txt

00128.txt

00140.txt

00064.txt

00008.txt

00035.txt

00095.txt

00090.txt

00016.txt

00116.txt

00118.txt

00005.txt

00103.txt

00017.txt

00139.txt

00097.txt

00050.txt

00121.txt

00085.txt

00018.txt

00098.txt

Copyright.txt

00113.txt

00052.txt

00144.txt

00084.txt

00069.txt

00134.txt

00004.txt

00088.txt

00029.txt

00074.txt

00132.txt

00077.txt

00041.txt

00053.txt

00104.txt

00115.txt

00078.txt

00149.txt

00141.txt

00131.txt

00021.txt

00028.txt

00031.txt

00009.txt

00046.txt

00147.txt

00044.txt

00013.txt

00001.txt

00109.txt

00099.txt

00102.txt

00040.txt

00129.txt

00094.txt

00014.txt

00086.txt

00130.txt

00049.txt

00079.txt

00048.txt

00123.txt

00065.txt

00106.txt

00015.txt

00056.txt

00045.txt

00030.txt

00089.txt

00082.txt

00155.txt

00036.txt

00124.txt

00043.txt

00025.txt

00003.txt


Full Text










RELATIONSHIPS AMONG HYDROSOIL, WATER CHEMISTRY,
TRANSPARENCY, CHLOROPHYLL a, AND SUBMERSED MACROPHYTE BIOMASS

By

Kenneth A. Langeland


A DISSERTATION PRESENTED TO THE GRADUATE COUNCIL
OF THE UNIVERSITY OF FLORIDA IN
PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

UNIVERSITY OF FLORIDA


1982














ACKNOWLEDGEMENTS

This work could not have been accomplished without the cooperation

of Center for Aquatic Weeds personnel. My appreciation for the efforts

of certain people deserves special mention: to Margaret Glenn, Mary

Rutter, and Julie Ziecina for their assistance; to Kat Perry for her

patience while typing the paper; to Dr. D.E. Canfield, Jr., Dr. W.T.

Haller, and Dr. D.L. Sutton for their guidance; and to Dr. J.V. Shireman

for setting an example of the "philosophical" and "scholarly" approach

to scientific investigation.

Funds were provided by the Agricultural Research Service,

U.S.D.A. under Cooperative Agreement No. 58-7B30-0-177. "Biomass

Galactica" was provided by the U.S. Army Corps of Engineers, Jacksonville

District through the efforts of Joe Joyce and Jim McGehee.
















TABLE OF CONTENTS


ACKNOWLEDGEMENTS .

LIST OF TABLES . .

LIST OF FIGURES .

ALPHABETICAL LIST OF BOTANICAL AND COMMON NAMES

KEY TO SYMBOLS . .

ABSTRACT . .

CHAPTER


ONE GENERAL INTRODUCTION .

TWO HYDRILLA GROWTH RESPONSE TO CONCENTRATIONS OF
EXTRACTABLE NUTRIENTS IN PREPARED SUBSTRATES

Introduction .

Materials and Methods .

Results and Discussion .

Conclusions .

THREE HYDROSOIL RELATED NUTRITION OF SUBMERSED
MACROPHYTES IN SEVEN FLORIDA LAKES .

Introduction .

Materials and Methods .

Results and Discussion .

Conclusions .


Page

. ii



. viii



. xi

. xii


S. .. 12

. 33


. 34

. 34

. 35

. 35

. 65










FOUR










FIVE

APPENDIX




APPENDIX




APPENDIX


APHY

ICAL


SKETCH .. .


Page


RELATIONSHIPS AMONG WATER CHEMISTRY, TRANSPARENCY,
CHLOROPHYLL a, AND SUBMERSED MACROPHYTES IN SEVEN
FLORIDA LAKES .... ......

Introduction . .

Materials and Methods .

Results and Discussion .

Conclusions . .

SUMMARY AND CONCLUSION .

1. LOCATIONS OF BIOMASS AND HYDROSOIL SAMPLES
ALONG TRANSECTS IN STUDY LAKES, DURING TWO
SAMPLING PERIODS. NUMBERS CORRESPOND TO BUOY
NUMBERS IN APPENDIX 2 and APPENDIX 3. .

2. CONCENTRATIONS OF NUTRIENTS (% DRY WT, 0
INDICATES BELOW DETECTABLE LIMITS) AND BIOMASS
(G DRY WT/SQ M) OF SUMBERSED MACROPHYTES. BUOY
NUMBERS CORRESPOND TO THOSE IN APPENDIX 1 .

3. CONCENTRATIONS OF NUTRIENTS IN HYDROSOIL
(MG/L, 0 INDICATES BELOW DETECTABLE LIMITS),
ORGANIC MATTER (OM, % DRY WT), AND DENSITY
(G DRY WT/ML). BUOY NUMBERS CORRESPOND TO
THOSE IN APPENDIX 1. .

4. BATHYMETRIC MAPS OF STUDY LAKES .

5. HYPSOGRAPHIC CURVES OF STUDY LAKES .


APPENDIX

APPENDIX

BIBLIOGRP

BIOGRAPH:















LIST OF TABLES


Page


Table 2-1.


Table 2-2.


Table 2-3.


Table 2-4.



Table 2-5.



Table 3-1.



Table 3-2.


Table 3-3.


Table 3-4.


Concentrations of nutrients (mg/m3) measured
in source water 11

Means and confidence limits of extractable
nutrient concentrations, using different
extraction times with Mehlich's extractant. 13

Concentrations of nutrients and organic matter
content of prepared substrates. 21

Correlation between concentrations of extract-
able nutrients in prepared substrates (Pearson
product moment correlation coefficients, P <.05) 23

Concentrations of nutrients in hydrilla
tissue and critical levels of these nutrients
in waterweed (Gerloff 1973). Numbers in
parentheses are standard errors of the mean 24

Locations of study lakes and dates of hydro-
soil and submersed macrophyte biomass
sampling. . ... 36

Cumulative frequency of exchangeable nutrients
(mg/l hydrosoil) in the hydrosoil of six
Florida lakes in SeptemDer and October 1981. 37

Average submersed macrophyte biomass measured
in seven Florida lakes in 1981. 39

Regression models relating submersed macrophyte
biomass to concentrations of nutrients in
hydrosoil (y=biomass, all regression coefficients
are significantly greater than 0 at a .1 level
of probability by students t, numbers in
parentheses indicate the proportion of the total
sums of squares explained by the variable above
it.) . .. 41








Page


Table 3-5.







Table 3-6.






Table 3-7.



Table 3-8.



Table 4-1.



Table 4-2.


Table 4-3.




Table 4-4.

Table 4-5.


Regression models relating total submersed
macrophyte biomass to concentrations of
nutrients in hydrosoil (y=biomass, all
regresssion coefficients are significantly
greater than 0 at a .1 level of probability
by student t, numbers in parentheses indicate
the proportion of the total sums of squares
explained by the variable above). ... 42

Regression equations that relate levels of
nutrients in lake substrates to levels of
the corresponding nutrients in tissues of root
producing submersed macrophytes (all data is
from fall sampling, all regression coefficients
and intercept estimates are significant at the
.1 levels of probability). ... 45

Pearson product-moment correlation coefficients
between plant tissue nutrient concentrations and
plant biomass (p = .05) 46

Water chemistry parameters measured during
September and October 1981 (average of 4 random
surface water samples, BDL = below detectable
limits). . 63

Measurements used to estimate total submersed
macrophyte biomass in study lakes and resulting
biomass estimates. .... 0

Comparison of the availability of light in
Florida lakes to the occurrence of submersed
macrophytes . 71

Chlorophyll a and Secchi transparency that was
measured, predicted from observed N and P, or
predicted from potentially available N and P
of submersed macrophytes (equations of Canfield
1981 and Canfield and Hodgson 1981). 7

Water chemistry data of study lakes (Data
from Canfield 1981). 7

Measured concentrations of plant nutrients in
lake water (average of 4 subsurface samples
BDL = below detectable limits). ... .. 7









Page


Table 4-6.



Table 4-7.


Average potential concentrations of plant
nutrients in lake water (sum of observed
values and additions from submersed
macrophytes, assuming 100% release) .. 78

Average nutrient concentrations of submersed
macrophytes (% dry wt, numbers in parenthese
are standard errors of the mean) 79














LIST OF FIGURES


Page


Figure 2-1.


Figure 2-2.



Figure 2-3.



Figure 2-4.





Figure 2-5.




Figure 2-6.




Figure 2-7.




Figure 3-1.


Effect of extraction time, with Mehlich's
extractant, on extractable P (dashed lines
enclose 95% confidence limits on predicted
means) . .

Effect of extraction time, with Mehlich's
extractant, on extractable Fe (dashed lines
enclose 95% confidence limits) ....... .

Effect of extraction times, with Mehlich's
extractant, on extractable Cu (dashed lines
enclose 95% confidence limits) ...... .

Yield response of hydrilla to increasing
concentrations of P in the substrate.
(Vertical bars represent 95% confidence limits
of the predicted means and are offset from
the observed averages: '0', N=5; 'X',
N=15.) . 2

Yield response of hydrilla to increasing
concentration of K in the substrate (Vertical
bars represent 95% confidence of the predicted
means and are offset from the observed
averages: '0', N=5; 'X', N=15.) 2

Concentrations of P in hydrilla tissue in response
to increasing concentrations of P in the substrate.
(Vertical bars represent confidence limits on the
predicted means, Gerloff's (1973) critical level
for waterweed = .14%). 3

Concentration of K in hydrilla tissue in response
to increasing concentrations of K in the substrate.
(Vertical bars represent confidence limits on
predicted means, Gerloff's (1973) critical level
for waterweed = .80.) 3

Cumulative frequency of N concentrations in
hydrilla tissues (Sept. through Oct. 1981). The
dashed line marks the critical level of N for 4
waterweed (Gerloff 1973) .


viii











Figure 3-2.



Figure 3-3.




Figure 3-4.



Figure 3-5.




Figure 3-6.



Figure 3-7.


Cumulative frequency of P concentrations in
hydrilla tissues (Sept. through Oct. 1981).
The dashed line marks the critical level
of P for waterweed (Gerloff 1973) .

Cumulative frequency of K concentrations in
hydrilla tissue (Sept..through Oct. 1981).
The dashed line marks the critical level of K
for waterweed (Gerloff 1973) .

Cumulative frequency of Ca concentrations in
hydrilla tissues (Sept. through Oct. 1981).
The dashed line marks the critical level of
K for waterweed (Gerloff 1973) .

Cumulative frequency of Mg concentrations in
hydrilla tissues (Sept. through Oct. 1981).
The dashed line marks the critical level of
Mg for waterweed (Gerloff 1973) .

Cumulative frequency of Fe concentrations in
hydrilla tissues (Sept. through Oct. 1981).
The dashed line marks the critical level of
Fe for waterweed (Gerloff 1973) .

Cumulative frequency of Cu concentrations in
hydrilla tissues (Sept. through Oct. 1981,
BDL = below detectable limits) ..


Page


51




53



55




57




59



61


I
















ALPHABETICAL LIST OF BOTANICAL AND COMMON NAMES


Botanical name

Bacopa caroliniana (Walt) Robins

Ceratophyllum demersum L.

Egeria densa (Planch.)

Elodea nuttallii (Planch.) St. John

Hydrilla verticillata (L.F.) Caspary

Mayaca aublettii Michx

Micranthemum umbrosum (Walt.) Blake

Myriophyllum alterniflorum D.C.

M. aquaticum (Vell.) Verdi.

M. spicatum L.

Potamogeton crispus L.

P. illinoensis Morong.

P. nodosus Poir

P. pectinatus L.

P. perforliatus L.

Proserpinaca palustris L.


Common name

bacopa

coontail

egeria

waterweed

hydrilla

bog-moss

baby-tears

watermilfoil

parrot's-feather

Eurasian watermilfoil

curled pondweed

Illinois pondweed

pondweed

sago pondweed

pondweed

mermaid weed

















KEY TO SYMBOLS

N nitrogen

P phosphorus

K potassium

Ca calcium

Mg magnesium

Fe iron

Cu copper

OM organic matter














Abstract of Dissertation Presented to the Graduate Council
of the University of Florida in Partial Fulfillment of the
Requirements for the Degree of Doctor of Philosophy

RELATIONSHIPS AMONG HYDROSOIL, WATER CHEMISTRY
TRANSPARENCY, CHLOROPHYLL a AND SUBMERSED MACROPHYTE BIOMASS
By

Kenneth A. Langeland

December 1982

Chairman: William T. Haller

Major Department: Agronomy

The role of submersed macrophytes in nutrient cycling and the

subsequent influences on water quality parameters and phytoplankton

biomass are poorly understood. The relationships were, therefore,

studied among concentrations of N, P, K, Ca, Mg, Fe, and Cu in

water and hydrosoil, chlorophyll a concentration in water, trans-

parency, and submersed macrophyte biomass in seven Florida lakes,

which ranged from oligo-mesotrophic to eutrophic. The growth

response of hydrilla (Hydrilla verticillata) to extractable N, P,

K, Ca, Mg, Fe, and Cu concentrations in prepared rooting media was

also studied under laboratory conditions.

Hydrilla shoot weight increased linearly under laboratory

conditions as nutrient concentrations increased in the rooting media,

suggesting that growth was limited by nutrient availability to the

roots. High correlation among the nutrients prevented determination

of a single limiting nutrient. Concentrations of P and K in rooting

media were positively related to concentrations in the hydrilla tissue.









Above 153 pg P/g and 8 pg K/g in the rooting media, concentrations

of P and K in the hydrilla tissue remained constant. Concentrations

of N, Ca, Mg, Fe, and Cu remained constant throughout the range of

these nutrients in the rooting media.

Under natural conditions, there was no significant effect of

hydrosoil nutrient concentrations on submersed macrophyte biomass

among lakes in January through February 1981 when biomass ranged

from 12 to 51 g dry weight/m2. In September and October 1981 when

biomass ranged from 12 to 240 g dry weight/m2, K had a significant

positive effect on biomass; however, only 4% of the variability

could be explained. Hydrosoil concentrations of N, P, K, Ca, and

Mg explained small amounts of macrophyte biomass variability within

lakes.

The vertical distribution of submersed macrophytes was directly

influenced by water transparency and basin morphometry. Submersed

macrophytes were absent where water depths prevent sufficient light

for plant growth from reaching the lake bottom. This depth occurred

where 0.7% to 7% of full sunlight (PAR) was transmitted.

Submersed macrophyte biomass was directly related to lake trophic

state. However, where high macrophyte densities occurred, P and

chlorophyll a concentrations were lower than predicted for lakes in

the physiographic regions. The data suggest that high macrophyte biomass

suppresses phytoplankton production by acting as a P sink and results

in increased transparency. Using measurements of macrophyte biomass and

nutrient content, changes in water conditions after release of this

nutrient pool can be predicted.


xiii











CHAPTER 1.
GENERAL INTRODUCTION

Florida's 7,783 lakes (4 ha or more in size), totaling 9,266 km2

(Heath and Conover 1981) are an important recreational and economic

resource. The diversity of lake trophic types which include some

of the most oligotrophic lakes in the country and highly productive

eutrophic conditions (Canfield 1981) offers a variety of water uses.

The highly productive lakes generally provide excellent fishing for

both sport and commercial fishing. Sport fishing alone is a $400

million a year industry in Florida (Cato and Mathis 1979). On the

other end of the spectrum, the environment associated with oligotrophic

lakes is suitable for swimming, skin diving and water skiing. Many

Florida lakes, however, have increased dramatically in their nutrient

levels via cultural eutrophication (Shannon and Brezonik 1972). It

has been suggested that this enrichment of waters, particularly with

P, can encourage the growth of aquatic macrophytes to nuisance levels

which greatly reduce previous water uses or render them impossible.

It has consequently been suggested that aquatic weed growth may be

reduced in certain situations by abatement and or reduction of

nutrients in lakes (MacKenthun 1971; Sheffield 1970). The relation-

ship between algal biomass measured as chlorophyll a, and total P

concentrations has been well documented (Canfield and Bachmann 1981;

Dillon and Rigler 1974; Jones and Bachmann; 1976) and reductions in

chlorophyll a concentrations have been shown following reduction of

nutrient inputs to lakes (Edmondson 1979; Michalski and Conroy 1973;











Schindler 1975). However, similar relationships pertaining to

submersed macrophytes have not been reported.

It has been suggested that the importance of nutrients derived

from the hydrosoil by the roots of submersed macrophytes requires

that the hydrosoil be given important consideration in lake

restoration (Carignan and Kalff 1979). If absorption of nutrients

from the hydrosoil by the roots of submersed macrophytes is important

to their nutrition, then the hydrosoil must be considered since

nutrient concentration can be several orders of magnitude higher

than in the overlying water (Wetzel 1975). However, if nutrients

held in the hydrosoil are unavailable to submersed macrophytes,

then reduction of nutrient inputs and subsequent lowering of the

availability of nutrients for foliar absorption should be effective

in lowering macrophyte biomass providing limiting concentrations can

be achieved.

Nutritional requirements of submersed aquatic macrophytes have
only recently been studied in detail, and,the importance of root

nutrition is still a matter of debate (Cole and Toetz 1975; Waisel

and Shapira 1971). Gerloff (1973) has established critical levels

of most essential elements for the growth of waterweed under laboratory

conditions. Concentrations of P in waterweed tissues were found to

be close to the critical concentrations in a low fertility lake,

indicating that, in the lake studied, P was limiting to the growth of

waterweed. In addition, data were obtained that indicated growth-

limiting levels of Cu in some of the lakes studied. Basiouny and

Haller (1978) reported the nutritional requirements of hydrilla

and showed that the levels of nutrients in water required for optimum

hydrilla growth in laboratory experiments overlaps the range found in












natural waters. Their research has also indicated a Ca limitation

of hydrilla growth in Lake Jackson, Florida, which may be followed

by limitations of Mg and K.

Some early studies demonstrated that relationships exist between

the rooting medium and plant growth. Pond (1905) demonstrated that

several species of root-producing submersed macrophytes produced more

growth (length) when rooted in soil collected from a stream bed

than when rooted in sand or suspended over either the soil or sand.

Similar results were obtained by Snell (1907) which suggested the

importance of the rooting substrate to the growth and development of

root-producing submersed macrophytes. Works of Pearsall (1917, 1918,

1920, 1921) suggested that sedimentation rate, texture, and potash (K)

content of the substrates in English lakes were important factors

affecting plant species distribution. Likewise, Misra (1938)

demonstrated different growth responses of three aquatic species

when they were rooted in three different substrates. Misra concluded

that, for optimum growth, pondweed required intermediate organic

matter (12%), minimum C:N ratio, high levels of NH4 production, and

low redox potential. Denny (1972) demonstrated that nutrient-poor

sand or gravel substrates cannot support the plant production observed

on organic, nutrient-rich substrates, and the effect of substrates

can only be partially mediated by altering water chemistry.

Investigations using radioactive tracers, stable heavy isotopes,

and controlled environment which allow for the isolation of the root

and shoot portions of the plant have provided evidence for root

absorption of certain essential nutrients by several submersed

macrophytes. Bristow and Whitcombe (1971) have demonstrated that when












the shoots and roots are isolated and provided with phosphate, 90%,

59%, and 74% of the phosphate in the shoots of parrot's-feather,

Eurasian watermilfoil, and egeria respectively, are derived via the

roots as P32. Similar experiments have demonstrated thatN15H4 is

absorbed by the roots of egeria and translocated to the shoots

(Toetz 1974) and that Fe59 EDTA is absorbed by the roots of

hydrilla, 3% of which is translocated to the shoots (Basiouny et

al. 1977).

DeMarte and Hartman (1974) have shown equally efficient root

uptake and translocation of P32 from two distinct natural lake

sediments, muck and sand, by Eurasian watermilfoil. Carignan and

Kalff (1979) reported similar root uptake of P32 by nine submersed

hydrophytes when the roots were isolated and the shoots were exposed

to ambient lake water. All nine of these species appear to have

acquired all of the P in their shoots via the roots when grown in

a mesotrophic or mildly eutrophic environment, and an average of

72% when grown in hypereutrophic conditions. Bole and Allen (1978)

also demonstrated under laboratory conditions, root uptake of P

from a natural hydrosoil by Eurasian watermilfoil and hydrilla. In

their study, root uptake occurred even at the highest experimental

level of P in the shoot compartment. These were 0.5 ppm for hydrilla

and 2.0 ppm for Eurasian watermilfoil. DeMarte and Hartman (1974)

demonstrated root uptake of Fe 59 and Ca45 by Eurasian watermilfoil

under laboratory conditions. However, greater translocation of Fe59

occurred when the plants were rooted in muck, while Ca45 uptake was

greater when in sand. Likewise, root absorption and subsequent

translocation of P32 by sago pondweed and curled pondweed (Welsh and









5

Denny 1979), and by egeria, hydrilla and Eurasian watermilfoil have

been demonstrated (Barko and Smart 1980).

Barko and Smart (1981) have shown that the substrate can be a

source of N, P, and K for bacopa, parrot's-feather, Illinois

pondweed and mermaid weed under laboratory conditions; however,

K was absorbed and translocated only to a limited extent. Hydrilla

also absorbs K more readily from the water than from hydrosoil

(Barko 1982). Nitrogen was shown to be absorbed by the roots of

Eurasian watermilfoil by Best and Mantai (1978) and by Nichols and

Keeney (1976). In Best's studies, N limitation occurred for plants

grown in sand; however, P did not become limiting.

The preceding discussion suggests that when the roots of

certain submersed macrophytes are provided with available forms of

nutrients, the plants are able to absorb nutrients via their roots

and translocate them upward to the shoot. Other data, however,

indicate that root derived nutrition is not important to plant

growth (Cole and Toetz 1975; Waisel and Shapira 1971). Debusk

and Ryther (1981) reported that hydrilla grew equally well when

suspended on Vexar screen as rooted in substrates. This suggests

an independence to substrate derived nutrition, under the conditions

provided. Cole and Toetz (1975) demonstrated that N1 5 H4 was

absorbed and translocated by the roots of pondweed; however, they

strongly suggested that this source of N was not important to growth

of the plant. A question remains as to how well laboratory or

.enclosure derived data relate to natural conditions. Owing to the

difficulty of studying submersed macrophyte physiology in situ,

most submersed macrophyte nutrition studies have been conducted under

artificial conditions.











The growth of submersed aquatic macrophytes may be influenced

to a large extent by the levels of available essential elements in

both the water column and substrate, and by the interaction of

nutrient availability and physical and chemical parameters. Consider-

ing the complex chemical, physical, and biological interactions in

the aquatic environment, it is necessary to evaluate the relationships

between submersed macrophyte abundance and hydrosoil chemical

characteristics observed in the laboratory under natural conditions.

A diversity of physical and chemical properties exist in north and

central Florida lakes. These range from clear, softwater, low-

nutrient lakes to highly colored, hardwater nutrient-rich lakes

(Canfield, 1981). Hydrosoil in these lakes range from sandy, low

organic hydrosoils to highly organic mucks. It is, therefore,

possible that these lakes will have different abilities of supporting

both planktonic and macrophytic vegetation and hydrosoil characteristics

may explain low biomass of submersed macrophytes in Florida lakes

such as Lake Kerr (Marion Co.) and Lake Jackson (Leon Co.).

Nutrient uptake by submersed macrophytes may have an important

effect on nutrient cycling and water chemistry. Phosphorus, for

example, cycles between three major compartments in lakes, the

epilimnion, the biota of the littoral, and the hypolimnion and the

sediments (Rigler 1964). The role of submersed macrophytes in the

littoral has been variously described as transporting nutrients from

the hydrosoil to the epilimnion (Barko and Smart 1980; DeMarte and

Hartman 1974; McRoy et al. 1972), or as a P sink (Goulder 1969).

It has further been suggested that in acting as a N sink, submersed

macrophytes suppress phytoplankton abundance (Goulder 1969), which

in turn can increase water clarity (Dillon and Rigler 1974;








7

Jones and Bachmann 1976). The objectives of this study were as

follows: 1. Determine the relationships between nutrient concen-

trations in the water and hydrosoil and submersed macrophyte biomass.

2. Determine the relationships between water chemistry and clarity,

phytoplankton standing crops and submersed macrophyte biomass and

distribution. This knowledge will be useful for developing lake

management strategies.















CHAPTER 2.
HYDRILLA GROWTH RESPONSE TO CONCENTRATIONS
OF EXTRACTABLE NUTRIENTS IN PREPARED SUBSTRATES

Introduction

Investigations of nutrient absorption by submersed macrophytes

have shown that several species can absorb nutrients from hydrosoil

via their roots (Barko and Smart 1980, 1981; Carignan and Kalff

1979; Welsh and Denny 1979). These observations may help to explain

growth differences of submersed macrophytes on different substrate

types (Pond 1905; Pearsall 1920, 1921; Misra 1938; Denny 1972).

The objective of this investigation was to determine if hydrilla

growth and nutrient accumulation are influenced by different concen-

trations of extractable N, P, K, Ca, Fe, Mg, and Cu in prepared

substrates. Because there is no standardization for determining

nutrient availability of hydrosoils, a soil extraction procedure

which reportedly could be used for determining the availability of

a wide range of plant nutrients with a single extraction over a

wide range of soil properties was investigated (Mehlich 1978;

Mehlich 1980). This extraction procedure, if satisfactory, could

be useful for future nutrient analysis of submersed substrates.


Materials and Methods

Five substrates were prepared by enriching coarse builders sand

with varying volumes of an organic (muck-sand) soil. An aliquot of

each of these substrates was prepared for chemical analysis by oven

drying to constant weight in aforced-air drying oven and grinding in












a mortar and pestle to pass a 20 mesh screen. Chemical analysis was

performed on four subsamples from each of these aliquots. Organic

matter (OM) content was estimated as the percent dry weight loss on

ignition in a muffle furnace, at 850 C for 4 hr. Exchangeable N was

determined by extracting 5 g of soil with 50 ml 2N potassium chloride

for 60 min, distilling the extract in the presence of magnesium oxide

and Davarda's alloy into boric acid, and backtitrating with sulfuric

acid (Bremmer 1975). Exchangeable P, K, Ca, Fe, Mg and Cu were

extracted with a solution of the following composition (Mehlich 1978;
Mechlich 1980): 0.2 N acetic acid, 0.25 N ammonium nitrate, 0.015 N

ammonium fluoride, 0.012 N nitric acid, 0.002 N EDTA. Aliquots (1.0 g)

of a highly organic (44% OM) substrate, which was collected from

Lake Jackson (Leon Co., FL) were shaken with 25 ml of extract in

50 ml Ehrlenmeyer flasks for 5, 10, 15, 30 and 60 min to determine the

effect of extraction time on nutrient yield. Subsamples of the prepared

substrates were extracted as above for 30 minutes. After shaking,

the extract was filtered (Whatman #54) into glass vials. Determination

of P was by an ascorbic acid, molybdate reduction method which was

modified from Mehlich (1978) and standard methods (American Public

Health Service 1981) as follows: The mixed reagent was prepared by

combining 100 ml 5 N sulfuric acid, 10 ml 7.1 x 10-3 M antimony

potassium tartrate, 100 ml 8.1 x 10-3 ammonium molybdate, 0.88 g

ascorbic acid, and bringing to a final volume of 1.0 1. Color was

developed with 1 ml of extractant and 20 ml of mixed reagent.

Concentrations of K, Ca, Fe, Mg, and Cu in soil extracts were determined

by atomic absorption spectrophotometry by the University of Florida

Soil Testing and Analytical Research Laboratory (Mitchell and Rhue 1979).









Five replications each of the prepared substrates were placed in

plastic pots (10 cm x 10 cm x 10 cm) and arranged in two 5 x 5 latin

squares, so that substrate types were randomized over both lighting

effects and water flow, in an indoor fiberglass tank (207 cm long x 56

cm wide). Pondwater (Table 2-1) at a depth of 42 cm was continually

circulated through the tank in such a way that water entered at the

bottom of one end of the tank and exited at the top of the other

end. A single terminal shoot of hydrilla 6 cm in length was placed

into each pot. The hydrilla shoots were obtained from a culture which

was grown from tubers under similar conditions. Light was provided

for 14 hr by 2 sodium vapor lamps that produced 1755 pE/m -sec PAR

at the water surface in the center of the tank. After growing under

these conditions for 6 weeks, plants were removed for weight determination

and chemical analysis. The experiment was repeated twice, once

beginning in April 1980 and once beginning in June 1980.

The concentration of P in the incoming water was determined

colorametrically by ascorbic acid, molybdate reduction (Murphy and

Riley 1962), after persulfate digestions (Mentzel and Corwin 1965).

Total Kjeldahl nitrogen (TKN) was determined on incoming water by

steam distillation according to the methods of Nelson and Sommers (1975).

Concentrations of K, Ca, Fe, Mg, and Cu were determined as extractablee

metals" (American Public Health Service 1981).

Dry weight of roots and shoots was determined separately after

drying to constant weight at 70 C. Plant tissue (shoots only) obtained

from all replications of a prepared substrate, within a latin square,

were combined for nutrient analysis. The plant tissue digestion

procedure was adopted from Koch and McMeekin (1924). Sample aliquots







11

Table 2-1. Concentrations of nutrients (mg/m3) measured in source
water.



N (Total) 1000

P (Total) 2

K 400

Ca 22000

Fe 975

Mg 1900

Cu 53









of 100 mg were digested for 1 hr on a digestion block at 350 C with

1 ml of 20% H2SO4. After cooling, the samples were reheated for 15

min with 1 ml of 30% H202. The last process was repeated until the

sample solution became clear and then one additional time (a total

of 2 to 4 times). Finally, the digest was diluted to 50 ml. All

glassware used in the digestion procedure and the following nutrient

analyses was acid-washed with hydrofluoric acid.

Nitrogen was determined as for water on a 1 ml aliquot of the

digest. Analysis of other nutrients was performed on plant digests

as described for soil extracts.

All data were analyzed at the Northeast Regional Data Center

in Gainesville, FL, using the Statistical Analysis System (SAS),

statistical software.

Results and Discussion

Small 95 confidence limits on the means (CLM) of subsamples

within extraction times (Table 2-2) for each element analyzed in

the Lake Jackson substrate shows a high degree of precision that can

be obtained using the extraction procedure. Regression analysis

yielded an insignificant slope coefficient (a = .05) when K

concentration was regressed over extraction time, and only the

shortest extraction time yielded significantly lower yields of

Ca and Mg (Table 2-2). Extraction time has a greater effect on the

amount of P, Fe, and Cu extracted (Figure 1 through 3). Extractable

P and Fe increase as a function of time, whereas extractable Cu


decreases.










Table 2-2.


Means and confidence limits of extractable
concentrations, using different extraction
Mehlich's extractant.


nutrient
times with


Extraction time Average Concentrations 95% CLM
(min) (mg/kg) (mg/kg)


K

256
256
250
250
256


8.5
9.2
9.4
10.0
9.9


Fe

548
611
636
667
707


1169
1256
1256
1250
1262


Mg
5 175 3
10 184 3
15 186 2
30 186 2
60 186 4































Figure 2-1. Effect of extraction time, with Mehlich's extractant,
on extractable P (dashed lines enclose 95% confidence
limits on predicted means).


































- -


10.5








10.0



0)
E

0.
u 9.5
-j

I-



X
J 9.0
W 9.0


y=7.75 + 1.32Logx


r2=.82


/
/
/


10 20 30 40 50

EXTRACTION TIME (min)
































Figure 2-2. Effect of extraction time, with Mehlich's extractant,
on extractable Fe (dashed lines enclosed 95% confidence
limits).







































y=460 + 142Logx


750






700



E

u. 650

-J

I-
0
S600
I-




550


r2=.88


10 20 30 40 50
EXTRACTION TIME (min)


Sx "






























Figure 2-3. Effect of extraction time, with Mehlich's extractant,
on extractable Cu (dashed lines enclose 95% confidence
limits).


































y=23.07 12.17Logx

2
r .96


N


x


I I I I


20 30 40

EXTRACTION TIME (min)


* 10
0)
E


0
w
-J
.J
CD
<


o 5

I-
Lu


n |


_A








20

For most applications, an extraction time of 15 minutes will

sufficiently estimate all of the plant nutrients which were studied

with the exception of, perhaps, Cu. A 15-min extraction underestimates

the maximum P yield of 30-min by 7% and underestimates the maximum

Fe yield obtained with a 60-min extraction by 11%. The major problem

occurs with Cu where a 15-min extraction would underestimate, by 36%,

the maximum value obtained with the 5-min extraction recommended by

Mehlich (1978).

The growth response of hydrilla was studied over a wide range

of nutrient concentrations in the prepared substrates (Table 2-3).

Because the substrates were prepared by mixing different levels of

the same sand (0% OM) and organic soil (17% OM), all of the nutrient

concentrations and OM within a particular substrate should be highly

correlated. This relationship is consistent for all nutrients

except Cu (Table 2-4). The lower correlation of Cu with other nutrients

seems to result from a decrease in extractability of Cu at the higher

levels of OM and other nutrients (cf. Table 2-3 and Table 2-4).

This effect appears to occur with Fe but apparently to a lesser extent.

This may not necessarily indicate a shortcoming of the extraction

procedure but may be a real indication of nutrient availability.

Analysis of variance indicated that there was no significant row

or column effect on shoot weight, root weight or root to shoot ratio

within the separate latin squares on different experimental dates,

nor was there an effect of experimental dates. One of the latin

squares, however, in the April experiment, produced a yield response

significantly different (p = .05) from the other latin squares. Data










Table 2-3. Concentrations of nutrients
of prepared substrates.


and organic matter content


OM N P K Ca Fe Mg Cu


% g/g1

0.0 9 17 4 257 80 .02 .06

1.0 12 153 8 1438 198 41.0 2.50

2.3 31 334 12 3625 388 76.0 6.00

4.6 60 1526 24 5233 625 123.0 6.70/

17.0 120 2664 32 9468 669 253.0 5.30








from this latin square (N = 5) were therefore analyzed separately

from the combined data of the remaining three latin squares (N = 15).

Because plant tissue was pooled within latin squares for the nutrient

analysis, plant tissue nutrient data were analyzed together.

Regression analysis indicated nonsignificant slope coefficients
for both groups bf data when root weight or root to shoot ratio was

regressed over any of the soil chemical parameters studied. Significant

(p = .01), positive, linear, slope coefficients were obtained when shoot
weight was regressed over any of the soil parameters studied suggesting

substrate related nutrient limitation throughout the range of prepared

substrates. The responses of shoot weight to P and K concentrations

in the substrates are presented in Figures 2-4 and 2-5 respectively

as examples; however, due to the high correlation between concentrations

of nutrients in the substrates (Table 2-4) it is impossible to assign

cause and effect between shoot weight and individual nutrients.

Concentration of N, Ca, Mg, Fe, and Cu in the plant tissues were
not influenced by concentrations of nutrients in prepared substrates

(Table 2-5). The tissue concentrations of P and K were influenced

by the concentrations of the respective nutrients in the substrates.

However, only the lowest concentration of P in the substrate resulted

in a lower tissue concentration of P, after which the slope of the

regression line approached zero (Figure 2-6), and the effect of

concentrations of K in the substrate had only a limited effect on

the concentration of K in hydrilla tissue (Figure 2-7).

Concentrations of N, K, Ca, Mg, Fe, and Cu in hydrilla tissues

were above critical levels for waterweed (Gerloff 1973) (Table 2-5,

Figure 2-7). The concentration of P in hydrilla tissue was only









Table 2-4. Correlation between concentrations of extractable
nutrients in prepared substrates (Pearson product
moment correlation coefficients, P<.05).


N P K Ca Mg Fe Cu

OM 0.98 0.95 0.90 0.97 0.97 0.78 0.45

N 0.99 0.97 0.99 0.99 0.89 0.59

P 0.98 0.97 0.97 0.90 0.59

K 0.98 0.97 0.97 0.73

Ca 0.99 0.93 0.71

Mg 0.90 0.64

Fe 0.88









Table 2-5.


Concentrations of nutrients in hydrilla tissue and critical
levels of these nutrients in waterweed (Gerloff 1973).
Numbers in parentheses are standard errors of the mean.


Concentration in
Hydrilla Tissue
(% dry wt)


Element


Critical level
(% dry wt)


N 1.73 (.04) 1.6

Ca .75 (.03) .28

Fe .13 (.006) .006

Mg .23 (.003) .10

Cu .0006 (.00002)






























Figure 2-4. Yield response of hydrilla to increasing concentrations
of P in the substrate. (Vertical bars represent 95%
confidence limits of the predicted means and are offset
from the observed averages: '0', N=5; 'X', N=15.)


























y=.18 .58x, r2=
y=.18 + .58x, r =.78


y=.40 + .36x, r2=.58


2.0


1.5





1.0





0.5


1 2 3
P CONCENTRATION IN SUBSTRATE (mg/g)






























Figure 2-5. Yield response of hydrilla to increasing concentration
of K in the substrate. (Vertical bars represent 95%
confidence of the predicted means and are offset from
the observed averages: '0', N=5; 'X', N=15.)
























y=.06x.- .16, r2=.73


y=.18 + .03x, r2=.59


2.0


1.5





1.0





0.5


10 20 30
K CONCENTRATION IN SUBSTRATE (mg/kg)
































Figure 2-6.


Concentrations of P in hydrilla tissue in response to
increasing concentrations of P in the substrate.
(Vertical bars represent confidence limits on the
predicted means, Gerloff's (1973) critical level for
waterweed = .14%).





























x
Y=4.29x + .0008

r2.98


0.5 1.0 1.5 2.0 2.5 3.0
mg/g

P CONCENTRATION IN SUBSTRATE


.25




.20


.15




.10


.05































Figure 2-7.


Concentration of K in hydrilla tissue in response to
increasing concentrations of K in the substrate.
(Vertical bars represent confidence limits on
predicted means, Gerloff's (1973) critical level
for waterweed = .80.)





























x
=.37x .65

r2.97


2.5




2.0




1.5




1.0




0.5




0


5 10 15 20 25 30 35
(mg/kg)
K CONCENTRATION IN SUBSTRATE








slightly below Gerloff's critical level at the lowest concentration

of P in the substrate (Figure 2-6). Concentrations of these nutrients

above critical levels for optimum growth, and the constant concentration

over varying concentrations in the substrates, may suggest that none

of these nutrients were limiting to growth. However, since shoot

weight increased as concentrations of nutrients in the substrates

increased, the total amount of assimilated nutrients also increased.

It can, therefore, be reasoned that as nutrient availability in the

substrates increased the rate of nutrient assimilation increased

and allowed for a proportional increase in carbon dioxide assimilation

measured as dry weight. Those nutrients which were not at limiting

concentrations were apparently absorbed proportionally to the limiting

nutrientss.

Conclusions

The soil extractant used in this investigation (Mehlich 1978, 1980)

proved satisfactory for estimating concentrations of extractable P,

K, Ca, Mg, and Fe. However, with a highly organic hydrosoil the amount

of Cu extracted was very sensitive to extraction time, while amounts

of P and Fe extracted were sensitive to a lesser extent. Hydrilla

growth increased linearly in response to increasing concentrations of

nutrients as measured with the new extractant.














CHAPTER 3.
HYDROSOIL RELATED NUTRITION OF SUBMERSED
MACROPHYTES IN SEVEN FLORIDA LAKES

Introduction

Hydrosoil characteristics may influence the growth and distribution

of submersed macrophytes in lakes (Pond 1905; Pearsall 1920, 1921;

Misra 1938; Denny 1972). Evidence for root uptake of nutrients by

several submersed species (Bristowe and Whitcombe 1971; DeMarte and

Hartman 1974; Welsh and Denny 1979; Barko and Smart 1981) indicate

that this influence may be related to nutrient availability in the

hydrosoil; and, it has been suggested that this nutrient source is a

dominant factor influencing submersed macrophyte growth (Carignan and

Kalff 1979). However, since foliar uptake of nutrients can also occur,

the relative importance of the hydrosoil and water as a source of

nutrients is still in question (Cole and Toetz 1975).

A wide range of nutrient conditions and submersed macrophyte

abundance in Florida lakes suggests nutrient related growth limitation.

For example, hydrilla often causes severe weed problems by producing

dense infestations in many lakes but has not proliferated in other

lakes such as Lake Jackson (Leon Co., FL) or Lake Kerr (Marion Co., FL)

and seemingly disappeared from Lake Down (Orange Co., FL) after its

introduction. If hydrosoils are the dominant source of nutrients to

submersed macrophytes, then biomass should be related to concentrations

of nutrients in the hydrosoil when nutrient availability is limiting to

growth. This relationship has not been studied under natural conditions











and may explain the lack of hydrilla growth in Lakes Kerr, Jackson and

Down. The objective of this study was to determine the importance of

N, P, K, Ca, Mg, Fe, and Cu concentrations in hydrosoil on the biomass

and nutrient content of submersed macrophytes in Florida lakes with

differing water chemistry.

Materials and Methods

Six lakes were sampled during January and February 1981 (winter

sampling) and September and October 1981 (fall sampling) (Table 3-1).

Lake Jackson was not sampled during the fall due to low water. Lake

Down was included in the fall as a substitute. Fathometer (Raytheon

DE 719 Precision Survey Fathometer Depth Recorder) tracings were

made during each sampling along transects that were established

between fixed landmarks in each lake (Appendix 1). Buoys were

dropped along the transects to mark representative vegetation and

fixmarks were drawn simultaneously on the fathometer tracing. At each

buoy, a plant biomass sample and a hydrosoil sample were collected.

Plant biomass was sampled with a biomass sampler similar to the one

described by Nall and Schardt (1978). During the fall sampling, an

improved bucket designed by the USAE, WES (Vicksburg, MS) was used.

Hydrosoil samples were collected either directly from the biomass

sampling bucket or by dropping a Ponar dredge through the hole in the

vegetation created by the sampler. All samples were placed on ice

prior to preparation for analysis.

Results and Discussion

Concentration ragnes of N in the hydrosoil were similar among the

lakes (Table 3-2) suggesting that the large differences in biomass


1












Table 3-1. Locations of study lakes and dates of hydrosoil and submersed macrophyte biomass sampling.

Lake Location W Sampling Dates (1981)
Lake Location Winter Fall

Okahumpka S21 T19S R23E January September

Lochloosa S20 T11S R22E February September

Fairview S10 T22S R29E January September

Stella S30 T12S R28E January September

Jackson S33 T2N R1W February ---

Down S8 T23S R28E ---- October

Kerr S22 T13S R25E January September










Table 3-2.


Cumulative
hydrosoil)
September


frequency of exchangeable nutrients (mg/1
in the hydrosoil of six Florida lakes in


and October 1981.


Lake 0% 25% 50% 75% 100%


Okahumpka
Lochloosa
Fairview
Stella
Down
Kerr


Okahumpka
Lochloosa
Fairview
Stella
Down
Kerr


Okahumpka
Lochloosa
Fairview
Stella
Down
Kerr


Okahumpka
Lochloosa
Fairview
Stella
Down
Kerr


Okahumpa
Lochloosa
Fairview
Stella
Down
Kerr


N
6 12 21 28 50
10 16 19 22 35
8 14 18 23 34
6 12 15 18 29
7 11 14 17 33
6 14 20 24 32

P
1. 2 4 7 12
2 4 5 7 15
7 15 23 30 49
14 27 37 48 91
8 40 44 50 80
3 5 6 8 41

K
3 10 14 20 40
5 6 8 11 20
6 24 47 56 77
14 22 28 41 144
17 27 31 34 40
3 7 10 12 23

Ca
78 248 313 399 708
216 293 329 395 561
127 604 765 925 1678
332 542 661 783 1532
212 461 571 652 894
125 572 652 775 974

Mg
5 19 25 31 46
24 38 46 52 90
19 29 35 42 65
32 81 104 126 334
37 132 148 165 240
18 81 109 129 181









Table 3-2. Continued.

Lake 0% 25% 50% 75% 100%

Fe
Okahumpka 34 44 51 66 131
Lochloosa 15 27 34 43 68
Fairview 10 19 25 34 53
Stella 11 31 51 61 92
Down 7 24 29 39 89
Kerr 9 46 68 90 185
Cu
Okahumpka .01 .01 .01 .01 .03
Lochloosa .03 .05 0.07 .08 0.39
Fairview .05 .62 0.92 1.13 2.00
Stella .21 .72 1.14 1.76 3.06
Down .01 1.83 2.30 2.78 8.00
Kerr .01 .17 0.20 0.24 .57










Table 3-3. Average
Florida


Lake


Okahumpka

Lochloosa

Fairview

Stella

Jackson

Down

Kerr


submersed macrophyte biomass measured in seven
lakes in 1981.


Submersed Macrophyte biomass (g dry wt/m2)
January February September October


240

100

246

125

---

59

12










(Table 3-3) could not be attributed to N availability in the hydrosoil.

Large differences in P, K, Ca, Mg, Fe, and Cu concentrations were

encountered among lakes; however, these differences do not appear related

to the large differences in macrophyte biomass (cf. Table 3-2 and Table

3-3), or with other trophic state indicators such as N concentration of

water or chlorophyll a concentration (cf. Table 3-3 and Table 3-8).

Relationships between individual species biomass (where a species was

encountered in sufficient number, Appendix 2) and hydrosoil nutrient

concentrations (Appendix 3), within lakes, were analyzed by stepwise

regression with stepwise entry at a .15 entry level (SAS Institute Inc.

1979). Water depth and hydrosoil organic matter (OM) (Appendix 3) were

included in this analysis. The resulting regression equations are

presented in Table 3-4 along with the proportions of the total sums of

squares which are explained by the individual variables (calculated from

sequential sums of squares). Significant nutrient effects on biomass

were not observed in the winter in Lakes Kerr, Fairview, and Lochloosa,

which may be due to annual senescence of hydrilla (Berg 1977). The

significant effects in Table 3-2 are inconsistent among species and lakes,

and where a nutrient has a significant effect on biomass only a small

proportion of the total sums of squares is explained. The occasional

negative effects implied for P, Ca, and Fe are difficult to explain;

however, considering the very small contributions to the models in most

of these cases they are unimportant effects.

In order to remove the possible competitive effects of one species

over another, species weights were summed over individual buoys and the
resulting total biomass values were regressed over hydrosoil nutrient









Table.3-4.


Regressiom models relating submersed macrophyte biomass to
concentrations of nutrients in hydrosoil (y=biomass, all
regression coefficients are significantly greater than 0
at a .1 level of probability by students t, numbers in
parentheses indicate the proportion of the total sums of
squares explained by the variable above it.)


Lake Common name Regression


September


- October 1981


bogmoss


hydrilla


Illinois pondweed


y = 82LogloFe + 95LogloCu
(.09) (.09)
y = 4.3K
(.23)


y = -409-7P + 294LogloFe
(.02) (.13)


+ 97Depth
(.27)


y = -.28 + 21LogloP +
(.02)

y = 80 27LogloCa
(.24)

y = 20K + 5.4 Mg
(.35) (.11)

y = 21 + 2.7P
(.24)

y = 277 + 407LogloK -
(.05)


January February 1981


13LogloOM
(.42)


377 LogloMg
(.15)


y = 323 + 65LogloDepth
(.13)

No significance

No significance

No significance

No significance

y = 71 + .31K + .02Ca = 5LogloFe
9.22) (.14) (.15)


Down


Fairview


Fairview


Kerr


Kerr


Lochloosa


Stella


Okahumpka


hydrilla


bogmoss


hydrilla


hydrilla


hydrilla


Fairview


Kerr

Kerr


Lochloosa

Okahumpka

Stella


hydrilla


hydri lla

bogmoss

hydrilla

hydrilla

hydrilla









Table 3-5.


Regression models relating total submersed macrophyte biomass
to concentrations of nutrients in hydrosoil (y=biomass, all
regression coefficients are significantly greater than 0 at
a .1 level of probability by student t, numbers in parentheses
indicate the proportion of the total sums of squares explained
by the variable above).


September October 1981


Regression


y = 274 + 412Logo1K 375LogioMg
(.05) (.15)

y = 263 + 449LogloK .72Ca + 6Mg
(.37) (.01) (.13)


y = 3.7K
(.18)


y = 21 + 2.7P


Down

Kerr


Among lakes


y = 82LogloFe + 95Log10Cu
(.09) (.09)

y = 14 + 1.5K .02Ca
(.20) (.11)

y = 182 + 3.1K 1.4Mg
(.04) (.28)
January February 1981


No significance
y = 373-198P
(.16)


Y = -198 + 138LogloP
(.26)

y = .91N + .26K + .04Ca
(.03) (.19) (.23)


No significance


y = .54N
(.36)


No significance


Lake


Okahumpka

Lochloosa

Fairview


Stel la


Okahumpka

Lochloosa


Fairview


Stella

Jackson


Kerr


Among lakes









concentrations, OM and depth-(Table 3-5). Concentrations of K in the

hydrosoil had a significant effect on macrophyte biomass in Lakes

Okahumpka, Lochloosa, Fairview, and Kerr in the fall. In the winter,

K concentration in the hydrosoil explained 19% of the macrophyte biomass

variability in Lake Stella and Ca explained 23%. Concentrations of P

in the hydrosoil had a positive effect on macrophyte biomass in Lake

Stella in fall and Fairview in winter. Hydrosoil concentrations of N

explained 36% of the variability of biomass in Lake Kerr in winter.

In no case was a large proportion of the variability of biomass

explained by hydrosoil nutrient concentration. When total biomass

is regressed over hydrosoil nutrient concentrations, among lakes, only

32% of the variance can be explained by hydrosoil nutrient concentrations

by the fall data. The negative response to Mg concentration, which

accounts for 28% of the variance is difficult to explain. No significant

effects of hydrosoil nutrient concentration on plant biomass were

observed among lakes in winter. Hydrosoil nutrient concentrations did

not explain a large portion of submersed macrophyte biomass or nutrient

content variability. Part of the unexplained variability may result from

the method of sampling by Ponar dredge or biomass sampler; however,

it is believed that the samples represent the root zone of submersed

macrophytes (both methods yield samples from c.a. the top 12 cm of

hydrosoil under most conditions). Other factors such as nutrient

availability in the water apparently control submersed macrophyte

biomass in the lakes studied.

Plant tissue nutrient concentrations (Appendix 4) were regressed

over the concentrations of the corresponding nutrients in hydrosoils

(Appendix 2). Few significant effects were observed in this analysis












(Table 3-6). Although small proportions of the variability are explained,

a negative relationship occurs frequently for Mg.

If any of the nutrients which, as regression analysis suggests, have an

effect on plant biomass are causing growth limitation, an increase in

growth is expected as the concentration of that nutrient increases in the

plant tissue. None of the significant correlations between plant biomass

and plant tissue nutrient concentrations (Table 3-7) support the regres-

sion models in Table 3-4, again, suggesting that hydrosoil related nutrient

limitation is not important in these lakes. The few significant positive

correlations which appear in Table 3-7 may suggest nutrient limitation;

however, a high correlation was only observed between biomass and Fe.

The negative correlations may reflect the fact that greater biomass

results from larger, more robust plants with greater structural material

and carbon content which cause a smaller elemental content to dry

weight ratio.

If nutrient limitation of submersed macrophytes is occurring in the

study lakes, tissue nutrient concentrations which are below critical

levels for optimum growth should occur in fall when growth is approaching

maximal. Unfortunately, established critical levels are not available

for any of the plant species which were encountered in a sufficient number

of samples from which to make inferences. Ferloff (1973) has suggested

critical levels for waterweed, a closely related species (family

Hydrocharitaceae) to hydrilla. Comparing nutrient concentrations of

hydrilla tissues, collected during fall, to Gerloff's critical levels

(Figures 3-1 through 3-7) should give some indication of nutrient

limitation to hydrilla growth. Care must be taken, however, in these

interpretations because two different genera are being compared, and











Table 3-6. Regression equations that relate levels on nutrients in lake substrates to levels of the
corresponding nutrients in tissues of root producing submersed macrophytes (all data is
from fall sampling, all regression coefficients and intercept estimates are significant
at the .1 levels of probability).

Lake Species Regression r


Okahumpka hydrilla Plant-K=.57Loglo hydrosoil-K .06

Fairview Illinois pondweed Plant-P=.22 .06 hydrosoil-P .09

Fairview hydrilla Plant-Mg=.61 .005 hydrosoil-Mg .19

Fairview hydrilla Plant-N=-1.2Logo0 hydrosoil-N

Lochloosa hydrilla Plant-Mgl=.7 .68Logio hydrosoil-Mg .11

Stella hydrilla Plant-Mg=1.5 -.51Loglo hydrosoil-Mg .31

Stella hydrilla Plant-N=.46Loglo hydrosoil-N .10

Down bogmoss Plant-Mg=.57 -.0009 hydrosoil-Mg .18

Kerr bogmoss Plant-Mg=.35 -.0005 hydrosoil-Mg .25








Table 3-7.


Pearson product-moment correlation coefficients between
plant tissue nutrient concentrations and plant biomass
(p = .05).


Common name N P K Ca Mg Fe Cu

September October 1981

bacopa ns ns ns ns ns ns -.57

hydrilla ns ns -.22 ns ns ns ns

bogmoss -.36 -.43 ns ns .49 -.41 ns

Illinois pondweed ns ns ns .56 ns ns ns

January February 1981

bacopa ns ns ns ns ns ns ns

hydrilla .19 ns .19 ns ns ns ns

bogmoss ns ns ns ns ns .83 ns

Illinois pondweed ns ns ns ns ns ns ns











because Gerloff's values are based upon indicator segments and values

in this study are based upon composite tissue samples. In addition,

the values from Lake Okahumpka can be compared to the other lakes in

the study. Lake Okahumpka is a shallow, eutrophic lake in which

hydrilla surface-mats early in the year and remains in this condition

into winter months. It can be assumed, therefore, that competition

for available space occurs before nutrient limitation results in

this lake, and nutrient concentrations of hydrilla tissues from Lake

Okahumpka represent at least adequate concentrations.

Nitrogen concentrations of hydrilla tissue from Lake Okahumpka and

Lake Lochloosa are both well above the Gerloff critical levels (Figure

3-1); however, about 50% of the tissue samples from Lake Fairview and

Lake Stella are below the Gerloff critical levels. Because these

concentrations are also below the the minimum values in Lake Okahumpka and

Lake Lochloosa, it would appear that N may be limiting to hydrilla growth

in certain areas of these lakes. Both Lake Fairview and Lake Stella

produce high densities of hydrilla in nuisance proportions; therefore,

when this limitation to growth occurs, it does not become important until

high plant biomass is attained. Since no relationship between hydrosoil

nutrient concentrations and biomass, or plant tissue nutrient concentra-

tions was indicated, the apparent N limitation does not seem to be

hydrosoil related. Lake Okahumpka and Lake Lochloosa also have the

highest measured concentration of total N in the water column (Table

3-8). These observations suggest a dominant role of the water column

as a source of N to hydrilla. Since only about 10% of Lake Kerr hydrilla

tissues contained less than the Gerloff critical level of N, and the

remainder had concentrations equivalent to those of Lake Okahumpka and

































Figure 3-1. Cumulative frequency of N concentrations in hydrilla
tissues (Sept. through Oct. 198). The dashed line
marks the critical level of N for waterweed (Gerloff 1973).



























-90


-50 100-


0 -10


75-


S 75-


-L
UJ 25-



S 5-

U3
2 -



- 2


-90


75-


25-


100-


4_


-90


100-


25-


00 9-
--90


L -

<






























Figure 3-2. Cumulative frequency of P concentrations in hydrilla
tissues (Sept. through Oct. 1981). The dashed line
marks the critical level of P for waterweed (Gerloff 1973).











6 -
100-
100

-90


5-
Uw 75-

Sto100-


< 4
-J
-90 25-
z

oa
E >
S -90


O 5

< .-,
1 00- -10

- 10

z5
Z 75-

-- 25 0-o -50 --o
C -s
S-10 0 2 05 2- -I
S-50 5- 0
5-
0 -0





< <



2 O a- C


O u































Figure 3-3. Cumulative frequency of K concentrations in hydrilla
tissue (Sept. through Oct. 1981). The dashed line
marks the critical level of K for waterweed (Gerloff 1973).

































6






5





S4





3


25-


--




0
Z
w



Lu




I-
o
-J


-ti
0-






























Figure 3-4. Cumulative frequency of Ca concentrations in hydrilla
tissues (Sept. through Oct. 1981). The dashed line
marks the critical level of K for waterweed (Gerloff 1973).













20








100


100-
IS -



10000









jz 1






0 -9o
Z





-50
-50
-90 -90
75








-10 -SO 2- 75-
-- 5- -- :-- -- -50
-_ 0 -I0 ---


o
0o so

5 I-
I-e









5 -o



0 -5 -0 "





00J






























Figure 3-5. Cumulative frequency of Mg concentrations in hydrilla
tissues (Sept. through Oct. 1981). The dashed line
marks the critical level of Mg for waterweed (Gerloff 1973).













100-





U 100

C)




u.z
< 10 f
_{ >. 100 -90
-
O z

0



0 > I00-0
< -90 *-90 -90
I-I


75- -50
Z 0 -o 7 -
1050










0-OO
U 0 5 -50 S

S- "- -0
Z 210- oo
o 5 L I j L j l C
0 10 I0 2S 00- 10 50 -




0 D _- 0-- ->5a

-5




".j :R I- _J

LL V)
0 -1





























Figure 3-6. Cumulative frequency of Fe concentrations in hydrilla
tissues (Sept. through Oct. 1981). The dashed line
marks the critical level of Fe for waterweed (Gerloff 1973).












































100

90 75 -90
5- -2-
25 5 m


CO
0 <
WJo -


0 LL
o -


w-J

U)


w cr
Scr
wW






























Figure 3-7. Cumulative frequency of Cu concentrations in hydrilla
tissues (Sept. through Oct. 1981, BDL = below detectable
limits).








100



-50


100-


100-
-90


-90 -50

25-
BDL
IL


320 o


401


30-


201-


I '










Lake Lochloosa, low biomass and apparent inability of hydrilla to

proliferate in Lake Kerr cannot be explained in terms of concentrations

of N in hydrilla tissue.

Plant tissue data for P (Figure 3-2) present a situation very similar

to that for N, although somewhat less definitive. Greater than 50% of

Lake.Fairview and Lake Stella samples fall below the Gerloff critical

levels suggesting P limitation in these lakes. However, the overlap

of about 25% of the Lake Okahumpka samples complicate this relationship.

The significant explanation of 24% of hydrilla biomass in Lake Stella

on P concentrations in hydrosoil (Table 3-4) combined with the observa-

tion that tissue concentrations of P are close to probable critical levels,

present fairly convincing evidence for P limitation in Lake Stella and

evidence for some effect of the substrates in providing a source of

assimilable P. As with N, P is in sufficient supply to allow for high

plant densities. Since only 2% of the variability in hydrilla biomass in

Lake Kerr could be attributed to P concentrations in the hydrosoils

(Table 3-4), no relationships existed between P concentration in the

hydrosoil and plant tissues, and P concentrations in the plant tissues

are well above apparent critical levels, P concentrations in plant

tissue cannot be used to explain the low biomass of hydrilla in Lake

Kerr.

Concentrations of K in hydrilla tissues that would indicate limita-

tion to hydrilla growth were not observed (Figure 3-3). As with N, a

strong relationship between levels of K in the lake water and levels of K in

hydrilla tissue were evident. Lake Fairview and Lake Stella had the

highest concentrations in the water column (Table 3-8). This is in contrast

to the regression analysis which indicated some dependence of hydrilla











Table 3-8. Water chemistry parameters measured during September and October 1981 (average of 4 random
surface water samples, BDL = below detectable limits).

N P K Ca Fe Mg Cu Chla
Lake (mg/m3) (mg/m3) (mg/l) (mg/l) (mg/l) (mgAn3) (mg/m3) (mgmi3) pH


Lochloosa 1644 25 .20 2.58 .20 2.43 .0025 28.7 8.5

Okahumpka 1326 12 .15 4.65 .25 2.18 .0025 4.1 9.8

Fairview 595 10 2.63 5.83 .20 2.95 BDL 2.5 7.7

Stella 490 12 6.10 4.70 .10 6.40 BDL 1.6 8.0

Kerr 202 8 .65 2.03 .10 2.45 .0025 2.6 5.7









biomass on K concentrations in the substrates of Lake Okahumpka,

Lake Fairview, Lake Lochloosa, and Lake Stella (Table 3-1), and may

suggest loss of hydrosoil derived K.

Concentrations of Ca in hydrilla tissue (Figure 3-4), among the

study lakes, is difficult to interpret. The concentrations of Ca in

hydrilla tissue within all of the study lakes overlap the critical

level for waterweed. However, because there were no important effects

of hydrosoil concentrations of Ca on hydrilla biomass or concentrations

of Ca in hydrilla tissues, there is not a great difference in Ca

levels of lake waters, and the concentrations of Ca in the hydrilla

tissues within lakes between the 50th and 10th percentile are very

similar, Ca does not exert an important effect on plant biomass in these

lakes.

Essentially, all of the concentrations of Mg in hydrilla tissue are

well above the Gerloff critical levels (Figure 3-5). These concentrations

are similar among all of the lakes except Lake Kerr. All hydrilla samples

from Lake Kerr yielded Mg concentrations less than about 25% of the

samples in the other lakes. This observation may relate to the low biomass

of hydrilla in Lake Kerr.

Comparison of Fe concentrations (Figure 3-6) of hydrilla tissues

among the lakes follows a similar pattern to that of N. The levels of Fe

in tissues from Lake Okahumpka, Lake Lochloosa, and Lake Kerr are well

above Gerloff's critical levels, whereas approximately 50% of the samples

from Lake Fairview and Lake Stella are below this level and the other lakes.

However, since these tissue concentrations are not related to hydrosoil

or water levels, Fe levels in the hydrilla tissues probably do not effect

hydrilla biomass.









The data provide no indication of Cu limitation since all hydrilla

tissues had Cu concentrations as high or higher than the tissues from

Lake Okahumpka (Figure 3-7).

Conclusions

Concentrations of N, P, K, Ca, Mg, Fe, and Cu in the hydrosoil

explained only small amounts of the large variability in submersed

macrophyte biomass of the study lakes and; likewise, had little or

no positive relationship with nutrient concentrations of hydrilla

tissue. This suggests that other factors such as availability of

nutrients in the water are controlling macrophyte biomass.














CHAPTER 4.
RELATIONSHIPS AMONG WATER CHEMISTRY, TRANSPARENCY,
CHLOROPHYLLY a, AND SUBMERSED MACROPHYTES IN SEVEN FLORIDA LAKES
Introduction

Florida lakes exhibit a wide range in abundance of submersed

macrophytes, from the excessive growth of weed choked lakes to a

nearly complete absence of submersed vegetation. Although the

importance of the submersed macrophyte community is a consensus,

with respect to beneficial as well as detrimental habitat effects,

too little is known concerning relationships between submersed

macrophytes and water quality, as measured by chemical parameters,

chlorophyll a, and clarity.

Submersed macrophytes may affect the cycling of nutrients in

lakes by absorbing nutrients from the hydrosoil and releasing them

into the water column (Barko and Smart 1980, McRoy et al. 1972) or

by absorbing nutrients from the water, thereby representing a nutrient

sink (Goulder 1969). Either of these processes may have an important

influence on the P concentration of lake water as predicted by

empirical models (Jones and Bachmann 1976; Kirchner and Dillon 1975,

Vollenweider 1975). Influences of macrophytes on P concentration

should therefore influence chlorophyll a (Canfield and Bachmann

1981, Dillon and Rigler 1974, Jones and Bachmann 1976) and water

clarity (Bachmann and Jones 1974, Canfield and Hodgson 1981, Dillon

and Rigler 1975). It has been noted that where macrophytes are

abundant, water tends to be more transparent and have low chlorophyll a








concentrations (Fitzgerald 1969, Goulder 1969, Wiebe 1934). This

antagonism has been attributed to competition for light (shading)

and nutrients (Embody 1928, Hasler and Jones 1949, Mulligan and

Baranowski 1969, Nichols 1971, Philips et al. 1978) or allelopathy

(Hogetso et al. 1960). It has also been observed that P concen-

trations in lakes heavily infested with submersed macrophytes are

often well below that expected for the geologic region (Canfield

1981).

Maristo (1941) showed a direct relationship between water

clarity and the lower limit of macrophytes in Finish lakes. Decreased

water clarity caused by phytoplankton should, therefore, decrease

the extent of vertical distribution in lakes. Dense phytoplankton

standing crops can suppress or eliminate submersed macrophytes by

shading after fertilization of ponds (Embody 1928, Moss 1976, Smith

and Swingle 1941).

The purpose of this work was to study the relationship between

water chemistry, chlorophyll a, water clarity and submersed

macrophyte biomass in Florida lakes which cover a range of trophic

types. These relationships would be used to predict potential

changes in these parameters caused by lake management practices.

Materials and methods
Sampling of lakes and nutrient analyses were conducted as

described in Chapter 2.

Bathymetric maps of all study lakes (Appendix 5) except Lake

Okahumpka were constructed using aerial photographs (USGS, Salt

Lake City, UT or Florida Citrus Census, Orlando, FL) and fathometer








tracings. Lake area and volumes were determined by polar planimetry

using bathymetric maps and hypsographic curves (Lind 1974) (Appendix 6).
The morphometric measurements of Simmonds and German (1980) were used

for Lake Okahumpka.

Areal coverage of submersed macrophytes was determined for
individual lakes by:

%C = EVt (100)
T
where %C = percent cover, V = vegetated length of transect Vt(m), and

Tt = sum of all transect lengths (m). Total submersed macrophyte

biomass was determined by:

B=(A) (%C/100)(D)
where B = total submersed macrophyte biomass (kg dry wt), A = lake

surface area (m2), and D = average submersed macrophyte density

(kg dry wt/m2), as measured with biomass sampler. Potential lake-water

nutrient concentrations were calculated by:

Wc=[((B)(PC)/100)/V]+Mc
where We = potential concentration of nutrient c in lake water (mg/m3)

B = (mg); Pc = concentration of nutrient c in plant tissue averaged

over species, V = lake volume (m3), and Mc = measured concentrations

of nutrient c in lake water.

Color was determined by the platinum cobalt method and matched
Nessler tubes (American Public Health Service 1981) after filtering

through a Gelman type A-E glass fiber filter.

Transparency was measured with a Li-Cor Model 185A quantum

meter, fitted with a LI-1925B underwater quantum sensor, and with

a 20 cm black and white Secchi disc.










69
Results and Discussion

Submersed macrophyte coverage of the study lakes ranged from

14% in Lake Kerr to 100% in Lake Okahumpka (Table 4-1). With

respect to vertical distribution, the maximum depth to which vegeta-

tion occurs in lakes seems to be governed by transparency. In all

lakes except Lake Down, hydrilla is the dominant submersed macrophyte

and occurred in the deepest vegetated parts of the lake. The lower

limit of vegetation in the lakes is close to the depth where the light

compensation of hydrilla occurs, or c.a. 1% full sunlight (Van et al.

1976) (Table 4-2). This is, however, within morphometric constraints.

The maximum depth of Lake Okahumpka is less than the depth at which

1% light transmittance occurs; hence, light limitation does not occur

and Lake Okahumpka has a total areal coverage of submersed macrophytes.

The minimum depths at which 1% transmittance occurs in Lake Lochloosa

and Lake Fairview were observed during the winter, and these agree well

with the maximum vegetation depths observed during both fall and winter.

It would appear that the higher transparencies, as were measured in

the fall, do not occur frequent enough to allow for colonization or

that further colonization can be expected in these lakes. The

15 vE/m2xs compensation point was measured under laboratory conditions

(Van et al. 1976) and may differ under natural conditions. In Lake

Stella and Lake Jackson,1% transmittance occurs at a considerably

greater depth than the maximum vegetation depth; however, since

greater depths occur beneath less than 2% of the lake surfaces

(Appendix 6) light limitation does not occur in these lakes. The

water level of Lake Down was low- at the time of sampling. The maximum

vegetation depth, however, is close to the depth of 1% transmittance

during normal water level conditions and reflects the relationship












Table 4-1. Measurements used to estimate total sumbersed macrophyte biomass in study lakes and resulting
biomass estimates.

Surface Lake Volume Vegetation Macrophyte Submersed Macrophyte Biomass (mt dry wt)
Lake Area (ha) (m3 X 106) Cover Density 9 C U
g/m2 Average Lower 95% CLM Upper 95% CLM

January February 1981

Okahumpka 208 2.59 100 51 106 77 135

Lochloosa 2198 45.90 39 114 972 521 1423

Fairview 114 4.30 74 46 39 27 51

Stella 123 4.28 80 32 31 21 41

Jackson 1143 19.80 64 12 88 16 160

Kerr 1132 42.00 14 12 19 7 31
September October 1981

Ukahumpka 208 2.59 100 307 643 431 855

Lochloosa 2187 45.90 62 100 2165 1662 2090

Fairview 114 4.30 75 246 210 163 257

Stella 123 4.28 90 125 138 110 168

Down 360 12.00 39 59 81 62 100

Kerr 1123 42.00 13 12 18 12 24











Table 4-2.


Comparison of the
macrophytes.


availability of light in Florida lakes to the occurrence of submersed


Depth (m) at Area (% of total) Maximum vegetation % transmittance at
Lake 1% transmittance receiving 1% depth (m) maximum vegetation
transmittance depth

January February 1981
Okahumpka 3.1 100 -
Lochloosa 2.4 68 2.6 0.7
Fairview 6.7 88 6.9 0.9
Stella 10.2 100 5.8 7.0
Jackson 6.3 99 4.2 1.2
Kerr 4.6 65 3.8 3.1

September October 1981
Okahumpka 5.7 100 -
Lochloosa 3.0 89 2.6 1.8
Fairview 9.0 98 6.7 3.2
Stella 9.2 99 5.6 6.3
Down 6.6 90 5 2.6
Kerr 5.7 100 3.5 6.4










between the lower limit of vegetation in the lake, and light penetration.

When the observed vegetation cover in Table 4-1 is compared to

the area where sufficient light is available for plant growth (Table

4-2), agreement between minimum or maximum values measured in winter

or fall for Lakes Okahumpka, Lochloosa, Fairview and Stella is

observed. This suggests that light penetration is the major factor

influencing areal submersed macrophyte cover in these lakes. In

Lakes Jackson and Down the remaining unvegetated area can be accounted

for by shallow areas which are intermittently wet and dry and which

are characterized by coarse unstable substrates. The large area of

Lake Kerr bottom which is unvegetated cannot be explained by light

penetration or substrates.

Lake Okahumpka, Lake Lochloosa, and Lake Fairview are situated

in geologic regions which are characterized by lakes in the mesotrophic

to eutrophic classification (Canfield 1981). Lake Okahumpka and Lake

Fairview, however, had high transparency (Table 4-3), low chlorophyll a

concentrations (Table 4-3) and P concentrations at or near the

oligomesotrophic range in the fall when macrophyte biomass is maximal.

These lakes also were supporting a dense submersed macrophyte community

(Table 4-1). Lake Lochloosa, on the other hand, had a moderate

density of submersed macrophytes and concurrently high concentrations

of both chlorophyll a and P. Lake Stella is located in a geologic region

characterized by meso-oligotrophic conditions. It supports moderate

levels of submersed macrophytes and has P and chlorophyll a concentra-

tions indicative of oligotrophy. Lake Down and Lake Kerr lie in geologic

regions typified by oligotrophic lakes. These lakes do exhibit

oligotrophic conditions and support only low macrophyte biomass.


-----------------------------------------_____A












Table 4-3.


Chlorophyll a and Secchi transparency that was measured, predicted from observed N and P, or
predicted from potentially available N and P of submersed macrophytes (equations of Canfield
1981 and Canfield and Hodgson 1981).


Chl a (mg/1)


Predicted
from
Observed N,P


Predicted
from
Potential N,P


Secchi transparency (m)


Predicted
Observed from
Observed N,P


Predicted
from
Potential N,P


13.0
20.8
8.9
7.1
11.3
9.2


12.9
14.6
3.9
4.5
2.3
1.6


January February 1981

33.9
42.1
12.6
9.5
14.4
9.6


September October 1981
218
48.5
21.0
15.0
4.4
1.7


B = Bottom


Color
(mg/l Pt)


Lake


Observed


Okahumpka
Lochloosa
Fairview
Stella
Jackson
Kerr


7.7
7.3
2.5
1.8
3.8
1.4


1.0
.8
1.5
1.6
1.5
1.6 .


0.7
0.6
1.3
1.4
1.3
1.6


Okahumpka
Lochloosa
Fairview
Stella
Jackson
Kerr


1.2(B)


2.5
4.3
4.0
3.0


1.7(B)
0.8
4.8
5.1(B)
6.2
4.5


4.1
28.7
2.5
1.6
1.7
2.6


1.1
1.2
2.4
2.3
3.4
4.5









Hydrilla, which usually causes a severe weed problem when it is

introduced into a lake, has been present in Lake Kerr for several years

but has not proliferated. Hydrilla reportedly has been found in

Lake Down (Nick Sassic, personal communication) but did not become

established. Note, also that the winter sampling, when macrophytes

are at lower densities, that all lakes except Lochloosa yielded

higher N or P concentrations than in fall. Where high nutrient

conditions are expected, high macrophyte densities are observed in

fall, but P concentration in the water is lower than expected. The

data suggest that this depression in expected P concentration results

from assimilation into macrophyte biomass. In lakes like Lochloosa,

however, P concentrations exceed the macrophyte populations assimilatory

capacity which allows for concurrent high phytoplankton populations.

These observations support the views of Goulder (1969) who suggested

that the apparent antagonism between macrophytes and phytoplankton

was a result of competition for nutrients where the macrophtyes

act as nutrient sink. Goulder (1969) suggested that macrophytes

were an important N sink. The data from this study suggest that P

is sensitive to macrophyte biomass and that assimilation of this nutrient

by the submersed macrophyte community limits phytoplankton production.

It is difficult to assign a single factor as effecting macrophyte

biomass because several water chemistry parameters are related.

Study lakes with low biomass have low alkalinity, low pH, and the

dominant anion is sulfate (Table 4-4). Further investigation will be

needed to separate these factors. The preceding discussion suggests

that P is the limiting factor to submersed macrophyte biomass in these

lakes. And, combined with the data of Chapter 3, that the water column









Table 4-4. Water chemistry data of study lakes (Data from Canfield, 1981).

Total alkalinity Specific conductance HCO-3 C03 S04= C1-
Lake (mg/l as CaCO3) (pmhos/cm 25 C) ci) (o (%) (%)

Okahumpka 50 165 35 22 7 36 8.3

Lochloosa 23 105 58 0 11 31 7.7

Fairview 52 206 60 1 17 22 8.0

Stella 16 71 13 0 54 32 7.0

Jackson 5 26 38 0 29 33 6.5

Down 1 207 3 0 62 35 5.5

Kerr 2 44 6 0 41 54 6.1







is the major source of P nutrition.

Some of the ecological changes in the different lakes in response

to releasing the nutrient pool represented by the macrophyte biomass

back to the water can be predicted. The potential nutrient concen-

trations in Table 4-6 are calculated from the average biomass estimates

and lakes volumes in Table 4-1, the average plant nutrient concentration

in Table 4-7, and the observed nutrient concentrations in Table 4-5.

Using the potential concentrations ofN and P and the equations of

Canfield (1981) and Canfield and Hodgson (1981), the potential

chlorophyll a concentrations and Secchi transparencies can be predicted

and compared to the observed values when the macrophytes were present.

The equations tend to overestimate chlorophyll a; therefore, the

predicted Secchi transparency and chlorophyll a concentrations based

on predictions from observed N and P are included along with the

observed values.

Addition of the potential nutrient pool assimilated in the

macrophyte biomass in fall will have a dramatic impact upon the

chlorophyll a and transparency of some lakes but not others (Table 4-6).

While the potential phytoplankton bloom and resulting reduction in

transparency in Lake Okahumpka, Lake Lochloosa and Lake Fairview would

be sufficient to eliminate or severely suppress macrophyte recoloniza-

tion, Lake Down would be little effected and Lake Kerr virtually

uneffected. The effects on Lake Stella, with respect to basin

morphometry, would not be sufficient to suppress macrophyte regrowth to

a large extent. The predicted effects for the winter sampling are not

as severe because of lower biomass estimates. Although submersed

macrophyte biomass is probably lower in winter, values for the two









Measured concentrations of plant nutrients in lake water


of 4 subsurface samples BDL = below detectable


N P K Ca Mg Fe
Lake (mg/m3) (mg/m3) (mg/1) (mg/1) (mg/1) (mg/1)


January -


September


February 1981

2.8 17.6

0.5 8.9

3.6 23.9

6.5 16.6

0.3 0.9

0.3 3.1


- October 1981


16.6

3.0

3.4

7.4

1.2

1.6


2.4

2.2

3.0

6.4

8.8

2.5


.27

.10

BDL

BDL

BDL

BDL


.20

.25

.20

.10

BDL

.10


(average
limits).


Okahumpka

Lochloosa

Fairview

Stella

Jackson

Kerr


1003

2000

913

703

989

893


Okahumpka

Lochloosa

Fairview

Stella

Down

Kerr


1327

1233

447

490

284

202


---


Table 4-5.









Table 4-6. Average potential concentrations of plant nutrients in
lake water (sum of observed values and additions from
submersed macrophytes, assuming 100% release).

N P K Ca Mg Fe
Lake (mg/m3) (mg/m3) (mg/1) (mg/l) (mg/1) (mg/1)


January February 1981


1871

2555

1084

816

1106

904


111 3.9

73 1.1

24 3.9

26 6.8

37 0.5

0.3


19.2

8.9

24.2

16.7

1.0

3.1


18.3

3.4

3.6

7.9

1.2

1.6


6.30

0.59

0.03

0.04

0.21

0.01


September -

533

148

78

57

19

9


October 1981

5.4

5.8

4.2

7.6

8.6

0.7


Okahumpka

Lochloosa

Fairview

Stella

Jackson

Kerr


Okahumpka

Lochloosa

Fairview

Stella

Down

Kerr


7283

2440

1321

1009

429

212


13.8

6.1

10.0

5.4

3.4

2.1


13.8

4.9

4.6

8.2

9.1

2.5


22.91

1.25

0.40

0.33

0.09

0.13











Table 4-7.


Average nutrient concentrations of submersed macrophytes
are standard errors of the mean).


(% dry wt, numbers in parentheses


Lake N P K Ca Mg Fe


January February 1981


2.12(0.06)
2.62(0.13)
1.89(0.07)
1.56(0.08)
2.83(0.22)
2.59(0.20)



2.52(0.07)
2.56(0.08)
1.79(0.06)
1.61(0.08)
2.15(0.04)
2.31(0.08)


0.18(0.02)
0.28(0.02)
0.12(0.01)
0.18(0.02)
0.29(0.01)
0.34(0.04)



0.21(0.01)
0.26(0.01)
0.14(0.01)
0.14(0.01)
0.15(0.01)
0.35(0.02)


2.57(0.17)
2.88(0.14)
3.52(0.23)
4.63(0.18)
3.80(0.47)
3.23(0.47)


0.39(0.04)
0.20(0.01)
0.36(0.04)
0.18(0.01)
0.17(0.03)
0.30(0.07)


September October 1981


2.08(0.09)
2.40(0.13)
3.02(0.15)
4.66(0.16)
1.39(0.04)
2,.56(0.21)


0.45(0.04)
0.30(0.03)
0.86(0.06)
0.21(0.03)
0.13(0.01)
0.29(0.04)


0.41(0.07)
0.35(0.02)
0.23(0.01)
0.71(0.04)
0.36(0.06)
0.34(0.03)



0.46(0.02)
0.57(0.04)
0.32(0.01)
0.55(0.04)
0.43(0.01)
0.33(0.02)


1.49(0.48)
0.25(0.04)
0.03(0.01)
0.06(0.01)
0.47(0.12)
0.29(0.04)



0.91(0.14)
0.22(0.02)
0.04(0.01)
0.04(>.01)
0.13(0.01)
0.62(0.07)


Okahumpka
Lochloosa
Fairview
Stella
Jackson
Kerr


Okahumpka
Lochloosa
Fairview
Stella
Down
Kerr








sampling periods are not directly comparable because the improved

sampling head was used for the fall sampling which reportedly

yields biomass estimates 2 to 3 times higher (Bruce Sabol,

personal communication). This correction factor would make the

values between the sampling periods comparable. Predictions, such

as these, will be influenced by hudraulic flushing and loading

rates; however, the predictions for the lakes in this study are

in agreement with expected nutrient concentrations for the geologic

regions in which the lakes are situated (Canfield 1981).


Conclusions

The vertical distribution of macrophytes in all but one of the

lakes studied could be attributed to water transparency. Transparency

is directly effected by the interaction between the submersed macrophyte

community, phytoplankton, and P availability in the water. Macrophytes

suppress phytoplankton populations by acting as a P sink while the

reduction in water transparency caused by high phytoplankton density

suppress the submersed macrophyte community. When net P loading

exceeds the assimilatory rate of the macrophyte community, phytoplankton

dominance may occur. Using estimates of the total N and P represented

by the macrophyte community, we can predict what the effects of

releasing these nutrients will be on phytoplankton and water transparency.














CHAPTER 5.
SUMMARY AND CONCLUSION

There is strong evidence that the roots of submersed macrophytes

can absorb nutrients from the rooting medium, and that the plants

can subsequently translocate these nutrients acropetally. As

discussed in Chapter 1, this has been observed in laboratory

experiments and in lake-exclosures, when the root environment is

supplied with an available form of a nutrient. For the purpose

of isolating and studying a specific phenomenon, many naturally

occurring environmental pressures are removed from the experimental

environment and unnatural constraints are placed upon plant growth.

Specific questions relating to plant functions are answered in this

manner, but the conclusions are not necessarily directly applicable

to the interactions of plants with their natural surroundings.

Submersed macrophyte abundance and nutrient content was

intensively studied with respect to concentrations of N, P, K, Ca,

Mg, Fe and Cu concentrations in the hydrosoil of seven Florida lakes.

The data suggested in some instances that P and K in the hydrosoil

have a small influence on biomass but the response was inconsistent

among the lakes. Hydrosoil derived nutrition is not ecologically

important in a lake sample which spans commonly encountered

limnological conditions in Florida lakes.

The relationships among macrophyte abundance and distribution,

water chemistry, and phytoplankton, are discussed in Chapter 4. The

vertical distribution of submersed macrophytes is directly influenced









by water transparency and basin morphometry. Submersed macrophytes

are absent where water depths prevent sufficient light for plant

growth from reaching the lake bottom. This depth occurred where 0.7%

to 7% of full sunlight (PAR) was transmitted. However, water trans-

parency is ephemeral in nature and is greatly effected by water

chemistry, submersed macrophytes and phytoplankton.

Submersed macrophyte biomass is directly related to lake trophic

state. However, where high macrophyte density occurs, P and

chlorophyll a concentrations are lower than eutrophic conditions.

High macrophyte biomass suppresses phytoplankton production by acting

as a P sink and results in increased water transparency. When P

loading exceeds the assimilatory rate of the macrophyte community,

high phytoplankton density can occur and prevent further macrophyte

production by shading. Using measurements of macrophyte biomass

and nutrient content, changes in water conditions after release of

this nutrient pool can be predicted.


L


































APPENDIX 1.


LOCATIONS OF BIOMASS AND HYDROSOIL SAMPLES ALONG
TRANSECTS IN STUDY LAKES, DURING TWO SAMPLING
PERIODS. NUMBERS CORRESPOND TO BUOY NUMBERS IN
APPENDIX 2 and APPENDIX 3.


~









































500 m
LAKE OKAHUMPKA

JAN. 1981








































500 m

LAKE OKAHUMPKA

SEPT. 1981





86






















N


w E

S
1000 m
LAKE LOCHLOOSA


FEB. 1981














































1000 m

LAKE LOCHLOOSA

SEPT. 1981




Full Text

PAGE 1

5(/$7,216+,36 $021* +<'5262,/ :$7(5 &+(0,675< 75$163$5(1&< &+/2523+
PAGE 2

$&.12:/('*(0(176 7KLV ZRUN FRXOG QRW KDYH EHHQ DFFRPSOLVKHG ZLWKRXW WKH FRRSHUDWLRQ RI &HQWHU IRU $TXDWLF :HHGV SHUVRQQHO 0\ DSSUHFLDWLRQ IRU WKH HIIRUWV RI FHUWDLQ SHRSOH GHVHUYHV VSHFLDO PHQWLRQ WR 0DUJDUHW *OHQQ 0DU\ 5XWWHU DQG -XOLH =LHFLQD IRU WKHLU DVVLVWDQFH WR .DW 3HUU\ IRU KHU SDWLHQFH ZKLOH W\SLQJ WKH SDSHU WR 'U '( &DQILHOG -U 'U :7 +DOOHU DQG 'U '/ 6XWWRQ IRU WKHLU JXLGDQFH DQG WR 'U -9 6KLUHPDQ IRU VHWWLQJ DQ H[DPSOH RI WKH SKLORVRSKLFDO DQG VFKRODUO\ DSSURDFK WR VFLHQWLILF LQYHVWLJDWLRQ )XQGV ZHUH SURYLGHG E\ WKH $JULFXOWXUDO 5HVHDUFK 6HUYLFH 6'$ XQGHU &RRSHUDWLYH $JUHHPHQW 1R % %LRPDVV *DO£FWLFD ZDV SURYLGHG E\ WKH 86 $UP\ &RUSV RI (QJLQHHUV -DFNVRQYLOOH 'LVWULFW WKURXJK WKH HIIRUWV RI -RH -R\FH DQG -LP 0F*HKHH

PAGE 3

7$%/( 2) &217(176 3DJH $&.12:/('*(0(176 /,67 2) 7$%/(6 Y /,67 2) ),*85(6 YL L L $/3+$%(7,&$/ /,67 2) %27$1,&$/ $1' &20021 1$0(6 [ .(< 72 6<0%2/6 [L $%675$&7 [LL &+$37(5 21( *(1(5$/ ,1752'8&7,21 7:2 +<'5,//$ *52:7+ 5(63216( 72 &21&(175$7,216 2) (;75$&7$%/( 1875,(176 ,1 35(3$5(' 68%675$7(6 ,QWURGXFWLRQ 0DWHULDOV DQG 0HWKRGV 5HVXOWV DQG 'LVFXVVLRQ &RQFOXVLRQV 7+5(( +<'5262,/ 5(/$7(' 1875,7,21 2) 68%0(56(' 0$&523+<7(6 ,1 6(9(1 )/25,'$ /$.(6 ,QWURGXFWLRQ 0DWHULDOV DQG 0HWKRGV 5HVXOWV DQG 'LVFXVVLRQ &RQFOXVLRQV

PAGE 4

3DJH )285 5(/$7,216+,36 $021* :$7(5 &+(0,675< 75$163$5(1&< &+/2523+
PAGE 5

/,67 2) 7$%/(6 7DEOH 7DEOH 7DEOH 7DEOH n 7DEOH 7DEOH 7DEOH 7DEOH 7DEOH 3DJH R &RQFHQWUDWLRQV RI QXWULHQWV PJPf PHDVXUHG LQ VRXUFH ZDWHU 0HDQV DQG FRQILGHQFH OLPLWV RI H[WUDFWDEOH QXWULHQW FRQFHQWUDWLRQV XVLQJ GLIIHUHQW H[WUDFWLRQ WLPHV ZLWK 0HKOLFKnV H[WUDFWDQW &RQFHQWUDWLRQV RI QXWULHQWV DQG RUJDQLF PDWWHU FRQWHQW RI SUHSDUHG VXEVWUDWHV &RUUHODWLRQ EHWZHHQ FRQFHQWUDWLRQV RI H[WUDFW DEOH QXWULHQWV LQ SUHSDUHG VXEVWUDWHV 3HDUVRQ SURGXFW PRPHQW FRUUHODWLRQ FRHIILFLHQWV 3 ef &RQFHQWUDWLRQV RI QXWULHQWV LQ K\GULOOD WLVVXH DQG FULWLFDO OHYHOV RI WKHVH QXWULHQWV LQ ZDWHUZHHG *HUORII f 1XPEHUV LQ SDUHQWKHVHV DUH VWDQGDUG HUURUV RI WKH PHDQ e /RFDWLRQV RI VWXG\ ODNHV DQG GDWHV RI K\GURn VRLO DQG VXEPHUVHG PDFURSK\WH ELRPDVV VDPSOLQJ &XPXODWLYH IUHTXHQF\ RI H[FKDQJHDEOH QXWULHQWV PJ K\GURVRLOf LQ WKH K\GURVRLO RI VL[ )ORULGD ODNHV LQ 6HSWHPRHU DQG 2FWREHU $YHUDJH VXEPHUVHG PDFURSK\WH ELRPDVV PHDVXUHG LQ VHYHQ )ORULGD ODNHV LQ 5HJUHVVLRQ PRGHOV UHODWLQJ VXEPHUVHG PDFURSK\WH ELRPDVV WR FRQFHQWUDWLRQV RI QXWULHQWV LQ K\GURVRLO \ ELRPDVV DOO UHJUHVVLRQ FRHIILFLHQWV DUH VLJQLILFDQWO\ JUHDWHU WKDQ DW D OHYHO RI SUREDELOLW\ E\ VWXGHQWV W QXPEHUV LQ SDUHQWKHVHV LQGLFDWH WKH SURSRUWLRQ RI WKH WRWDO VXPV RI VTXDUHV H[SODLQHG E\ WKH YDULDEOH DERYH LWf Y

PAGE 6

3DJH 7DEOH 5HJUHVVLRQ PRGHOV UHODWLQJ WRWDO VXEPHUVHG PDFURSK\WH ELRPDVV WR FRQFHQWUDWLRQV RI QXWULHQWV LQ K\GURVRLO \ ELRPDVV DOO UHJUHVVVLRQ FRHIILFLHQWV DUH VLJQLILFDQWO\ JUHDWHU WKDQ DW D OHYHO RI SUREDELOLW\ E\ VWXGHQW W QXPEHUV LQ SDUHQWKHVHV LQGLFDWH WKH SURSRUWLRQ RI WKH WRWDO VXPV RI VTXDUHV H[SODLQHG E\ WKH YDULDEOH DERYHf f 7DEOH 5HJUHVVLRQ HTXDWLRQV WKDW UHODWH OHYHOV RI QXWULHQWV LQ ODNH VXEVWUDWHV WR OHYHOV RI WKH FRUUHVSRQGLQJ QXWULHQWV LQ WLVVXHV RI URRW SURGXFLQJ VXEPHUVHG PDFURSK\WHV DOO GDWD LV IURP IDOO VDPSOLQJ DOO UHJUHVVLRQ FRHIILFLHQWV DQG LQWHUFHSW HVWLPDWHV DUH VLJQLILFDQW DW WKH OHYHOV RI SUREDELOLW\f 7DEOH 3HDUVRQ SURGXFWPRPHQW FRUUHODWLRQ FRHIILFLHQWV EHWZHHQ SODQW WLVVXH QXWULHQW FRQFHQWUDWLRQV DQG SODQW ELRPDVV S f f 7DEOH :DWHU FKHPLVWU\ SDUDPHWHUV PHDVXUHG GXULQJ 6HSWHPEHU DQG 2FWREHU DYHUDJH RI UDQGRP VXUIDFH ZDWHU VDPSOHV %'/ EHORZ GHWHFWDEOH OLPLWVf 7DEOH 0HDVXUHPHQWV XVHG WR HVWLPDWH WRWDO VXEPHUVHG PDFURSK\WH ELRPDVV LQ VWXG\ ODNHV DQG UHVXOWLQJ ELRPDVV HVWLPDWHV n 7DEOH &RPSDULVRQ RI WKH DYDLODELOLW\ RI OLJKW LQ )ORULGD ODNHV WR WKH RFFXUUHQFH RI VXEPHUVHG PDFURSK\WHV 7DEOH &KORURSK\OO DA DQG 6HFFKL WUDQVSDUHQF\ WKDW ZDV PHDVXUHG SUHGLFWHG IURP REVHUYHG 1 DQG 3 RU SUHGLFWHG IURP SRWHQWLDOO\ DYDLODEOH 1 DQG 3 RI VXEPHUVHG PDFURSK\WHV HTXDWLRQV RI &DQILHOG DQG &DQILHOG DQG +RGJVRQ f 7DEOH :DWHU FKHPLVWU\ GDWD RI VWXG\ ODNHV 'DWD IURP &DQILHOG f 7DEOH 0HDVXUHG FRQFHQWUDWLRQV RI SODQW QXWULHQWV LQ ODNH ZDWHU DYHUDJH RI VXEVXUIDFH VDPSOHV %'/ EHORZ GHWHFWDEOH OLPLWVf YQ

PAGE 7

3DJH 7DEOH 7DEOH $YHUDJH SRWHQWLDO FRQFHQWUDWLRQV RI SODQW QXWULHQWV LQ ODNH ZDWHU VXP RI REVHUYHG YDOXHV DQG DGGLWLRQV IURP VXEPHUVHG PDFURSK\WHV DVVXPLQJ b UHOHDVHf $YHUDJH QXWULHQW FRQFHQWUDWLRQV RI VXEPHUVHG PDFURSK\WHV b GU\ ZW QXPEHUV LQ SDUHQWKHVH DUH VWDQGDUG HUURUV RI WKH PHDQf YL L

PAGE 8

/,67 2) ),*85(6 )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH )LJXUH 3DJH (IIHFW RI H[WUDFWLRQ WLPH ZLWK 0HKOLFKnV H[WUDFWDQW RQ H[WUDFWDEOH 3 GDVKHG OLQHV HQFORVH b FRQILGHQFH OLPLWV RQ SUHGLFWHG PHDQVf A (IIHFW RI H[WUDFWLRQ WLPH ZLWK 0HKOLFKnV H[WUDFWDQW RQ H[WUDFWDEOH )H GDVKHG OLQHV HQFORVH b FRQILGHQFH OLPLWVf (IIHFW RI H[WUDFWLRQ WLPHV ZLWK 0HKOLFKnV H[WUDFWDQW RQ H[WUDFWDEOH &X GDVKHG OLQHV HQFORVH b FRQILGHQFH OLPLWVf
PAGE 9

3DJH )LJXUH &XPXODWLYH IUHTXHQF\ RI 3 FRQFHQWUDWLRQV LQ K\GULOOD WLVVXHV 6HSW WKURXJK 2FW f 7KH GDVKHG OLQH PDUNV WKH FULWLFDO OHYHO RI 3 IRU ZDWHUZHHG *HUORII f )LJXUH &XPXODWLYH IUHTXHQF\ RI FRQFHQWUDWLRQV LQ K\GULOOD WLVVXH 6HSWWKURXJK 2FW f 7KH GDVKHG OLQH PDUNV WKH FULWLFDO OHYHO RI IRU ZDWHUZHHG *HUORII f )LJXUH &XPXODWLYH IUHTXHQF\ RI &D FRQFHQWUDWLRQV LQ K\GULOOD WLVVXHV 6HSW WKURXJK 2FW f 7KH GDVKHG OLQH PDUNV WKH FULWLFDO OHYHO RI IRU ZDWHUZHHG *HUORII f )LJXUH &XPXODWLYH IUHTXHQF\ RI 0J FRQFHQWUDWLRQV LQ K\GULOOD WLVVXHV 6HSW WKURXJK 2FW f 7KH GDVKHG OLQH PDUNV WKH FULWLFDO OHYHO RI 0J IRU ZDWHUZHHG *HUORII f )LJXUH &XPXODWLYH IUHTXHQF\ RI )H FRQFHQWUDWLRQV LQ K\GULOOD WLVVXHV 6HSW WKURXJK 2FW f 7KH GDVKHG OLQH PDUNV WKH FULWLFDO OHYHO RI )H IRU ZDWHUZHHG *HUORII f )LJXUH &XPXODWLYH IUHTXHQF\ RI &X FRQFHQWUDWLRQV LQ K\GULOOD WLVVXHV 6HSW WKURXJK 2FW %'/ EHORZ GHWHFWDEOH OLPLWVf L[

PAGE 10

$/3+$%(7,&$/ /,67 2) %27$1,&$/ $1' &20021 1$0(6 %RWDQLFDO QDPH &RPPRQ QDPH %DFRSD FDUROLQLDQD :DOWf 5RELQV EDFRSD &HUDWRSK\OOXP GHPHUVXP / FRRQWDLO (JHULD GHQVD 3ODQFKf HJHULD (O RGHD QXWWDOOLL 3ODQFKf 6W -RKQ ZDWHUZHHG +\GULOOD YHUWLFLOODWD /)f &DVSDU\ K\GUL D 0D\DFD DXEOHWWLL 0LFK[ ERJPRVV 0LFUDQWKHPXP XPEURVXP :DOWf %ODNH EDE\WHDUV 0\ULRSK\OOXP DOWHUQLIORUXP '& ZDWHUPLOIRLO 0 DTXDWLFXP 9HLOf 9HUGL SDUURWnVIHDWKHU 0 VSLFDWXP / (XUDVLDQ ZDWHUPLOIRLO 3RWDPRJHWQ FULVSXV / FXUOHG SRQGZHHG 3 LOOLQRHQVLV 0RURQJ ,OOLQRLV SRQGZHHG 3 QRGRVXV 3RLU SRQGZHHG 3 SHFWLQDWXV / VDJR SRQGZHHG 3 SHUIRUOLDWXV / SRQGZHHG 3URVHUSLQDFD SDOXVWULV / PHUPDLG ZHHG [

PAGE 11

.(< 72 6<0%2/6 1 QLWURJHQ 3 SKRVSKRUXV SRWDVVLXP &D FDOFLXP 0J PDJQHVLXP )H LURQ &X FRSSHU 20 RUJDQLF PDWWHU ;,

PAGE 12

$EVWUDFW RI 'LVVHUWDWLRQ 3UHVHQWHG WR WKH *UDGXDWH &RXQFLO RI WKH 8QLYHUVLW\ RI )ORULGD LQ 3DUWLDO )XOILOOPHQW RI WKH 5HTXLUHPHQWV IRU WKH 'HJUHH RI 'RFWRU RI 3KLORVRSK\ 5(/$7,216+,36 $021* +<'5262,/ :$7(5 &+(0,675< 75$163$5(1&< &+/2523+
PAGE 13

$ERYH XJ 3J DQG \J .J LQ WKH URRWLQJ PHGLD FRQFHQWUDWLRQV RI 3 DQG LQ WKH K\GULOOD WLVVXH UHPDLQHG FRQVWDQW &RQFHQWUDWLRQV RI 1 &D 0J )H DQG &X UHPDLQHG FRQVWDQW WKURXJKRXW WKH UDQJH RI WKHVH QXWULHQWV LQ WKH URRWLQJ PHGLD 8QGHU QDWXUDO FRQGLWLRQV WKHUH ZDV QR VLJQLILFDQW HIIHFW RI K\GURVRLO QXWULHQW FRQFHQWUDWLRQV RQ VXEPHUVHG PDFURSK\WH ELRPDVV DPRQJ ODNHV LQ -DQXDU\ WKURXJK )HEUXDU\ ZKHQ ELRPDVV UDQJHG IURP WR J GU\ ZHLJKWPA ,Q 6HSWHPEHU DQG 2FWREHU ZKHQ R ELRPDVV UDQJHG IURP WR J GU\ ZHLJKWP KDG D VLJQLILFDQW SRVLWLYH HIIHFW RQ ELRPDVV KRZHYHU RQO\ b RI WKH YDULDELOLW\ FRXOG EH H[SODLQHG +\GURVRLO FRQFHQWUDWLRQV RI 1 3 &D DQG 0J H[SODLQHG VPDOO DPRXQWV RI PDFURSK\WH ELRPDVV YDULDELOLW\ ZLWKLQ ODNHV 7KH YHUWLFDO GLVWULEXWLRQ RI VXEPHUVHG PDFURSK\WHV ZDV GLUHFWO\ LQIOXHQFHG E\ ZDWHU WUDQVSDUHQF\ DQG EDVLQ PRUSKRPHWU\ 6XEPHUVHG PDFURSK\WHV ZHUH DEVHQW ZKHUH ZDWHU GHSWKV SUHYHQW VXIILFLHQW OLJKW IRU SODQW JURZWK IURP UHDFKLQJ WKH ODNH ERWWRP 7KLV GHSWK RFFXUUHG ZKHUH b WR b RI IXOO VXQOLJKW 3$5f ZDV WUDQVPLWWHG 6XEPHUVHG PDFURSK\WH ELRPDVV ZDV GLUHFWO\ UHODWHG WR ODNH WURSKLF VWDWH +RZHYHU ZKHUH KLJK PDFURSK\WH GHQVLWLHV RFFXUUHG 3 DQG FKORURSK\OO D FRQFHQWUDWLRQV ZHUH ORZHU WKDQ SUHGLFWHG IRU ODNHV LQ WKH SK\VLRJUDSKLF UHJLRQV 7KH GDWD VXJJHVW WKDW KLJK PDFURSK\WH ELRPDVV VXSSUHVVHV SK\WRSODQNWRQ SURGXFWLRQ E\ DFWLQJ DV D 3 VLQN DQG UHVXOWV LQ LQFUHDVHG WUDQVSDUHQF\ 8VLQJ PHDVXUHPHQWV RI PDFURSK\WH ELRPDVV DQG QXWULHQW FRQWHQW FKDQJHV LQ ZDWHU FRQGLWLRQV DIWHU UHOHDVH RI WKLV QXWULHQW SRRO FDQ EH SUHGLFWHG [ L L L

PAGE 14

3+$37)5 *(1(5$/ ,1752'8&7,21 )ORULGDnV ODNHV KD RU PRUH LQ VL]Hf WRWDOLQJ NP +HDWK DQG &RQRYHU f DUH DQ LPSRUWDQW UHFUHDWLRQDO DQG HFRQRPLF UHVRXUFH 7KH GLYHUVLW\ RI ODNH WURSKLF W\SHV ZKLFK LQFOXGH VRPH RI WKH PRVW ROLJRWURSKLF ODNHV LQ WKH FRXQWU\ DQG KLJKO\ SURGXFWLYH HXWURSKLF FRQGLWLRQV &DQILHOG f RIIHUV D YDULHW\ RI ZDWHU XVHV 7KH KLJKO\ SURGXFWLYH ODNHV JHQHUDOO\ SURYLGH H[FHOOHQW ILVKLQJ IRU ERWK VSRUW DQG FRPPHUFLDO ILVKLQJ 6SRUW ILVKLQJ DORQH LV D PLOOLRQ D \HDU LQGXVWU\ LQ )ORULGD &DWR DQG 0DWKLV f 2Q WKH RWKHU HQG RI WKH VSHFWUXP WKH HQYLURQPHQW DVVRFLDWHG ZLWK ROLJRWURSK ODNHV LV VXLWDEOH IRU VZLPPLQJ VNLQ GLYLQJ DQG ZDWHU VNLLQJ 0DQ\ )ORULGD ODNHV KRZHYHU KDYH LQFUHDVHG GUDPDWLFDOO\ LQ WKHLU QXWULHQW OHYHOV YLD FXOWXUDO HXWURSKLFDWLRQ 6KDQQRQ DQG %UH]RQLN f ,W KDV EHHQ VXJJHVWHG WKDW WKLV HQULFKPHQW RI ZDWHUV SDUWLFXODUO\ ZLWK 3 FDQ HQFRXUDJH WKH JURZWK RI DTXDWLF PDFURSK\WHV WR QXLVDQFH OHYHOV ZKLFK JUHDWO\ UHGXFH SUHYLRXV ZDWHU XVHV RU UHQGHU WKHP LPSRVVLEOH ,W KDV FRQVHTXHQWO\ EHHQ VXJJHVWHG WKDW DTXDWLF ZHHG JURZWK PD\ EH UHGXFHG LQ FHUWDLQ VLWXDWLRQV E\ DEDWHPHQW DQG RU UHGXFWLRQ RI QXWULHQWV LQ ODNHV 0DF.HQWKXQ 6KHIILHOG f 7KH UHODWLRQn VKLS EHWZHHQ DOJDO ELRPDVV PHDVXUHG DV FKORURSK\OO D DQG WRWDO 3 FRQFHQWUDWLRQV KDV EHHQ ZHOO GRFXPHQWHG &DQILHOG DQG %DFKPDQQ 'LOORQ DQG 5LJOHU -RQHV DQG %DFKPDQQ f DQG UHGXFWLRQV LQ FKORURSK\OO DA FRQFHQWUDWLRQV KDYH EHHQ VKRZQ IROORZLQJ UHGXFWLRQ RI QXWULHQW LQSXWV WR ODNHV (GPRQGVRQ 0LFKDVNL DQG &RQUR\

PAGE 15

6FKLQGOHU f +RZHYHU VLPLODU UHODWLRQVKLSV SHUWDLQLQJ WR VXEPHUVHG PDFURSK\WHV KDYH QRW EHHQ UHSRUWHG ,W KDV EHHQ VXJJHVWHG WKDW WKH LPSRUWDQFH RI QXWULHQWV GHULYHG IURP WKH K\GURVRLO E\ WKH URRWV RI VXEPHUVHG PDFURSK\WHV UHTXLUHV WKDW WKH K\GURVRLO EH JLYHQ LPSRUWDQW FRQVLGHUDWLRQ LQ ODNH UHVWRUDWLRQ &DULJQDQ DQG .DOII f ,I DEVRUSWLRQ RI QXWULHQWV IURP WKH K\GURVRLO E\ WKH URRWV RI VXEPHUVHG PDFURSK\WHV LV LPSRUWDQW WR WKHLU QXWULWLRQ WKHQ WKH K\GURVRLO PXVW EH FRQVLGHUHG VLQFH QXWULHQW FRQFHQWUDWLRQ FDQ EH VHYHUDO RUGHUV RI PDJQLWXGH KLJKHU WKDQ LQ WKH RYHUO\LQJ ZDWHU :HW]HO f +RZHYHU LI QXWULHQWV KHOG LQ WKH K\GURVRLO DUH XQDYDLODEOH WR VXEPHUVHG PDFURSK\WHV WKHQ UHGXFWLRQ RI QXWULHQW LQSXWV DQG VXEVHTXHQW ORZHULQJ RI WKH DYDLODELOLW\ RI QXWULHQWV IRU IROLDU DEVRUSWLRQ VKRXOG EH HIIHFWLYH LQ ORZHULQJ PDFURSK\WH ELRPDVV SURYLGLQJ OLPLWLQJ FRQFHQWUDWLRQV FDQ EH DFKLHYHG 1XWULWLRQDO UHTXLUHPHQWV RI VXEPHUVHG DTXDWLF PDFURSK\WHV KDYH RQO\ UHFHQWO\ EHHQ VWXGLHG LQ GHWDLO DQG WKH LPSRUWDQFH RI URRW QXWULWLRQ LV VWLOO D PDWWHU RI GHEDWH &ROH DQG 7RHW] :DLVHO DQG 6KDSLUD f *HUORII f KDV HVWDEOLVKHG FULWLFDO OHYHOV RI PRVW HVVHQWLDO HOHPHQWV IRU WKH JURZWK RI ZDWHUZHHG XQGHU ODERUDWRU\ FRQGLWLRQV &RQFHQWUDWLRQV RI 3 LQ ZDWHUZHHG WLVVXHV ZHUH IRXQG WR EH FORVH WR WKH FULWLFDO FRQFHQWUDWLRQV LQ D ORZ IHUWLOLW\ ODNH LQGLFDWLQJ WKDW LQ WKH ODNH VWXGLHG 3 ZDV OLPLWLQJ WR WKH JURZWK RI ZDWHUZHHG ,Q DGGLWLRQ GDWD ZHUH REWDLQHG WKDW LQGLFDWHG JURZWK OLPLWLQJ OHYHOV RI &X LQ VRPH RI WKH ODNHV VWXGLHG %DVLRXQ\ DQG +DOOHU f UHSRUWHG WKH QXWULWLRQDO UHTXLUHPHQWV RI K\GULOOD DQG VKRZHG WKDW WKH OHYHOV RI QXWULHQWV LQ ZDWHU UHTXLUHG IRU RSWLPXP K\GULOOD JURZWK LQ ODERUDWRU\ H[SHULPHQWV RYHUODSV WKH UDQJH IRXQG LQ

PAGE 16

QDWXUDO ZDWHUV 7KHLU UHVHDUFK KDV DOVR LQGLFDWHG D &D OLPLWDWLRQ RI K\GULOOD JURZWK LQ /DNH -DFNVRQ )ORULGD ZKLFK PD\ EH IROORZHG E\ OLPLWDWLRQV RI 0J DQG 6RPH HDUO\ VWXGLHV GHPRQVWUDWHG WKDW UHODWLRQVKLSV H[LVW EHWZHHQ WKH URRWLQJ PHGLXP DQG SODQW JURZWK 3RQG f GHPRQVWUDWHG WKDW VHYHUDO VSHFLHV RI URRWSURGXFLQJ VXEPHUVHG PDFURSK\WHV SURGXFHG PRUH JURZWK OHQJWKf ZKHQ URRWHG LQ VRLO FROOHFWHG IURP D VWUHDP EHG WKDQ ZKHQ URRWHG LQ VDQG RU VXVSHQGHG RYHU HLWKHU WKH VRLO RU VDQG 6LPLODU UHVXOWV ZHUH REWDLQHG E\ 6QHOO f ZKLFK VXJJHVWHG WKH LPSRUWDQFH RI WKH URRWLQJ VXEVWUDWH WR WKH JURZWK DQG GHYHORSPHQW RI URRWSURGXFLQJ VXEPHUVHG PDFURSK\WHV :RUNV RI 3HDUVDOO f VXJJHVWHG WKDW VHGLPHQWDWLRQ UDWH WH[WXUH DQG SRWDVK .f FRQWHQW RI WKH VXEVWUDWHV LQ (QJOLVK ODNHV ZHUH LPSRUWDQW IDFWRUV DIIHFWLQJ SODQW VSHFLHV GLVWULEXWLRQ /LNHZLVH 0LVUD f GHPRQVWUDWHG GLIIHUHQW JURZWK UHVSRQVHV RI WKUHH DTXDWLF VSHFLHV ZKHQ WKH\ ZHUH URRWHG LQ WKUHH GLIIHUHQW VXEVWUDWHV 0LVUD FRQFOXGHG WKDW IRU RSWLPXP JURZWK SRQGZHHG UHTXLUHG LQWHUPHGLDWH RUJDQLF PDWWHU bf PLQLPXP &1 UDWLR KLJK OHYHOV RI 1+L SURGXFWLRQ DQG ORZ UHGR[ SRWHQWLDO 'HQQ\ f GHPRQVWUDWHG WKDW QXWULHQWSRRU VDQG RU JUDYHO VXEVWUDWHV FDQQRW VXSSRUW WKH SODQW SURGXFWLRQ REVHUYHG RQ RUJDQLF QXWULHQWULFK VXEVWUDWHV DQG WKH HIIHFW RI VXEVWUDWHV FDQ RQO\ EH SDUWLDOO\ PHGLDWHG E\ DOWHULQJ ZDWHU FKHPLVWU\ ,QYHVWLJDWLRQV XVLQJ UDGLRDFWLYH WUDFHUV VWDEOH KHDY\ LVRWRSHV DQG FRQWUROOHG HQYLURQPHQW ZKLFK DOORZ IRU WKH LVRODWLRQ RI WKH URRW DQG VKRRW SRUWLRQV RI WKH SODQW KDYH SURYLGHG HYLGHQFH IRU URRW DEVRUSWLRQ RI FHUWDLQ HVVHQWLDO QXWULHQWV E\ VHYHUDO VXEPHUVHG PDFURSK\WHV %ULVWRZ DQG :KLWFRPEH f KDYH GHPRQVWUDWHG WKDW ZKHQ

PAGE 17

WKH VKRRWV DQG URRWV DUH LVRODWHG DQG SURYLGHG ZLWK SKRVSKDWH b b DQG b RI WKH SKRVSKDWH LQ WKH VKRRWV RI SDUURWnVIHDWKHU (XUDVLDQ ZDWHUPLOIRLO DQG HJHULD UHVSHFWLYHO\ DUH GHULYHG YLD WKH URRWV DV 3 6LPLODU H[SHULPHQWV KDYH GHPRQVWUDWHG WKDW1+ LV DEVRUEHG E\ WKH URRWV RI HJHULD DQG WUDQVORFDWHG WR WKH VKRRWV 7RHW] f DQG WKDW )H ('7$ LV DEVRUEHG E\ WKH URRWV RI K\GULOOD b RI ZKLFK LV WUDQVORFDWHG WR WKH VKRRWV %DVLRXQ\ HW DO f 'H0DUWH DQG +DUWPDQ f KDYH VKRZQ HTXDOO\ HIILFLHQW URRW XSWDNH DQG WUDQVORFDWLRQ RI 3 IURP WZR GLVWLQFW QDWXUDO ODNH VHGLPHQWV PXFN DQG VDQG E\ (XUDVLDQ ZDWHUPLOIRLO &DULJQDQ DQG .DOII f UHSRUWHG VLPLODU URRW XSWDNH RI 3 E\ QLQH VXEPHUVHG K\GURSK\WHV ZKHQ WKH URRWV ZHUH LVRODWHG DQG WKH VKRRWV ZHUH H[SRVHG WR DPELHQW ODNH ZDWHU $OO QLQH RI WKHVH VSHFLHV DSSHDU WR KDYH DFTXLUHG DOO RI WKH 3 LQ WKHLU VKRRWV YLD WKH URRWV ZKHQ JURZQ LQ D PHVRWURSKLF RU PLOGO\ HXWURSKLF HQYLURQPHQW DQG DQ DYHUDJH RI b ZKHQ JURZQ LQ K\SHUHXWURSKLF FRQGLWLRQV %ROH DQG $OOHQ f DOVR GHPRQVWUDWHG XQGHU ODERUDWRU\ FRQGLWLRQV URRW XSWDNH RI 3 IURP D QDWXUDO K\GURVRLO E\ (XUDVLDQ ZDWHUPLOIRLO DQG K\GULOOD ,Q WKHLU VWXG\ URRW XSWDNH RFFXUUHG HYHQ DW WKH KLJKHVW H[SHULPHQWDO OHYHO RI 3 LQ WKH VKRRW FRPSDUWPHQW 7KHVH ZHUH SSP IRU K\GULOOD DQG SSP IRU (XUDVLDQ ZDWHUPLOIRLO 'H0DUWH DQG +DUWPDQ f GHPRQVWUDWHG URRW XSWDNH RI )H DQG &D E\ (XUDVLDQ ZDWHUPLOIRLO XQGHU ODERUDWRU\ FRQGLWLRQV +RZHYHU JUHDWHU WUDQVORFDWLRQ RI )H RFFXUUHG ZKHQ WKH SODQWV ZHUH URRWHG LQ PXFN ZKLOH &D XSWDNH ZDV JUHDWHU ZKHQ LQ VDQG /LNHZLVH URRW DEVRUSWLRQ DQG VXEVHTXHQW WUDQVORFDWLRQ RI 3 E\ VDJR SRQGZHHG DQG FXUOHG SRQGZHHG :HOVK DQG

PAGE 18

'HQQ\ f DQG E\ HJHULD K\GULOOD DQG (XUDVLDQ ZDWHUPLOIRLO KDYH EHHQ GHPRQVWUDWHG %DUNR DQG 6PDUW f %DUNR DQG 6PDUW f KDYH VKRZQ WKDW WKH VXEVWUDWH FDQ EH D VRXUFH RI 1 3 DQG IRU EDFRSD SDUURWnVIHDWKHU ,OOLQRLV SRQGZHHG DQG PHUPDLG ZHHG XQGHU ODERUDWRU\ FRQGLWLRQV KRZHYHU ZDV DEVRUEHG DQG WUDQVORFDWHG RQO\ WR D OLPLWHG H[WHQW +\GULOOD DOVR DEVRUEV PRUH UHDGLO\ IURP WKH ZDWHU WKDQ IURP K\GURVRLO %DUNR f 1LWURJHQ ZDV VKRZQ WR EH DEVRUEHG E\ WKH URRWV RI (XUDVLDQ ZDWHUPLOIRLO E\ %HVW DQG 0DQWDL f DQG E\ 1LFKROV DQG .HHQH\ f ,Q %HVWnV VWXGLHV 1 OLPLWDWLRQ RFFXUUHG IRU SODQWV JURZQ LQ VDQG KRZHYHU 3 GLG QRW EHFRPH OLPLWLQJ 7KH SUHFHGLQJ GLVFXVVLRQ VXJJHVWV WKDW ZKHQ WKH URRWV RI FHUWDLQ VXEPHUVHG PDFURSK\WHV DUH SURYLGHG ZLWK DYDLODEOH IRUPV RI QXWULHQWV WKH SODQWV DUH DEOH WR DEVRUE QXWULHQWV YLD WKHLU URRWV DQG WUDQVORFDWH WKHP XSZDUG WR WKH VKRRW 2WKHU GDWD KRZHYHU LQGLFDWH WKDW URRW GHULYHG QXWULWLRQ LV QRW LPSRUWDQW WR SODQW JURZWK &ROH DQG 7RHW] :DLVHO DQG 6KDSLUD f 'HEXVN DQG 5\WKHU f UHSRUWHG WKDW K\GULOOD JUHZ HTXDOO\ ZHOO ZKHQ VXVSHQGHG RQ 9H[DU VFUHHQ DV URRWHG LQ VXEVWUDWHV 7KLV VXJJHVWV DQ LQGHSHQGHQFH WR VXEVWUDWH GHULYHG QXWULWLRQ XQGHU WKH FRQGLWLRQV SURYLGHG &ROH DQG 7RHW] f GHPRQVWUDWHG WKDW 1 + ZDV DEVRUEHG DQG WUDQVORFDWHG E\ WKH URRWV RI SRQGZHHG KRZHYHU WKH\ VWURQJO\ VXJJHVWHG WKDW WKLV VRXUFH RI 1 ZDV QRW LPSRUWDQW WR JURZWK RI WKH SODQW $ TXHVWLRQ UHPDLQV DV WR KRZ ZHOO ODERUDWRU\ RU HQFORVXUH GHULYHG GDWD UHODWH WR QDWXUDO FRQGLWLRQV 2ZLQJ WR WKH GLIILFXOW\ RI VWXG\LQJ VXEPHUVHG PDFURSK\WH SK\VLRORJ\ LQB VLWX PRVW VXEPHUVHG PDFURSK\WH QXWULWLRQ VWXGLHV KDYH EHHQ FRQGXFWHG XQGHU DUWLILFLDO FRQGLWLRQV

PAGE 19

7KH JURZWK RI VXEPHUVHG DTXDWLF PDFURSK\WHV PD\ EH LQIOXHQFHG WR D ODUJH H[WHQW E\ WKH OHYHOV RI DYDLODEOH HVVHQWLDO HOHPHQWV LQ ERWK WKH ZDWHU FROXPQ DQG VXEVWUDWH DQG E\ WKH LQWHUDFWLRQ RI QXWULHQW DYDLODELOLW\ DQG SK\VLFDO DQG FKHPLFDO SDUDPHWHUV &RQVLGHUn LQJ WKH FRPSOH[ FKHPLFDO SK\VLFDO DQG ELRORJLFDO LQWHUDFWLRQV LQ WKH DTXDWLF HQYLURQPHQW LW LV QHFHVVDU\ WR HYDOXDWH WKH UHODWLRQVKLSV EHWZHHQ VXEPHUVHG PDFURSK\WH DEXQGDQFH DQG K\GURVRLO FKHPLFDO FKDUDFWHULVWLFV REVHUYHG LQ WKH ODERUDWRU\ XQGHU QDWXUDO FRQGLWLRQV $ GLYHUVLW\ RI SK\VLFDO DQG FKHPLFDO SURSHUWLHV H[LVW LQ QRUWK DQG FHQWUDO )ORULGD ODNHV 7KHVH UDQJH IURP FOHDU VRIWZDWHU ORZ QXWULHQW ODNHV WR KLJKO\ FRORUHG KDUGZDWHU QXWULHQWULFK ODNHV &DQILHOG f +\GURVRLO LQ WKHVH ODNHV UDQJH IURP VDQG\ ORZ RUJDQLF K\GURVRLOV WR KLJKO\ RUJDQLF PXFNV ,W LV WKHUHIRUH SRVVLEOH WKDW WKHVH ODNHV ZLOO KDYH GLIIHUHQW DELOLWLHV RI VXSSRUWLQJ ERWK SODQNWRQLF DQG PDFURSK\WLF YHJHWDWLRQ DQG K\GURVRLO FKDUDFWHULVWLFV PD\ H[SODLQ ORZ ELRPDVV RI VXEPHUVHG PDFURSK\WHV LQ )ORULGD ODNHV VXFK DV /DNH .HUU 0DULRQ &Rf DQG /DNH -DFNVRQ /HRQ &Rf 1XWULHQW XSWDNH E\ VXEPHUVHG PDFURSK\WHV PD\ KDYH DQ LPSRUWDQW HIIHFW RQ QXWULHQW F\FOLQJ DQG ZDWHU FKHPLVWU\ 3KRVSKRUXV IRU H[DPSOH F\FOHV EHWZHHQ WKUHH PDMRU FRPSDUWPHQWV LQ ODNHV WKH HSLOLPQLRQ WKH ELRWD RI WKH OLWWRUDO DQG WKH K\SROLPQLRQ DQG WKH VHGLPHQWV 5LJOHU f 7KH UROH RI VXEPHUVHG PDFURSK\WHV LQ WKH OLWWRUDO KDV EHHQ YDULRXVO\ GHVFULEHG DV WUDQVSRUWLQJ QXWULHQWV IURP WKH K\GURVRLO WR WKH HSLOLPQLRQ %DUNR DQG 6PDUW 'H0DUWH DQG +DUWPDQ 0F5R\ HW DO f RU DV D 3 VLQN *RXOGHU f ,W KDV IXUWKHU EHHQ VXJJHVWHG WKDW LQ DFWLQJ DV D 1 VLQN VXEPHUVHG PDFURSK\WHV VXSSUHVV SK\WRSODQNWRQ DEXQGDQFH *RXOGHU f ZKLFK LQ WXUQ FDQ LQFUHDVH ZDWHU FODULW\ 'LOORQ DQG 5LJOHU

PAGE 20

-RQHV DQG %DFKPDQQ f 7KH REMHFWLYHV RI WKLV VWXG\ ZHUH DV IROORZV 'HWHUPLQH WKH UHODWLRQVKLSV EHWZHHQ QXWULHQW FRQFHQn WUDWLRQV LQ WKH ZDWHU DQG K\GURVRLO DQG VXEPHUVHG PDFURSK\WH ELRPDVV 'HWHUPLQH WKH UHODWLRQVKLSV EHWZHHQ ZDWHU FKHPLVWU\ DQG FODULW\ SK\WRSODQNWRQ VWDQGLQJ FURSV DQG VXEPHUVHG PDFURSK\WH ELRPDVV DQG GLVWULEXWLRQ 7KLV NQRZOHGJH ZLOO EH XVHIXO IRU GHYHORSLQJ ODNH PDQDJHPHQW VWUDWHJLHV

PAGE 21

&+$37(5 +<'5,//$ *52:7+ 5(63216( 72 &21&(175$7,216 2) (;75$&7$%/( 1875,(176 ,1 35(3$5(' 68%675$7(6 ,QWURGXFWLRQ ,QYHVWLJDWLRQV RI QXWULHQW DEVRUSWLRQ E\ VXEPHUVHG PDFURSK\WHV KDYH VKRZQ WKDW VHYHUDO VSHFLHV FDQ DEVRUE QXWULHQWV IURP K\GURVRLO YLD WKHLU URRWV %DUNR DQG 6PDUW &DULJQDQ DQG .DOII :HOVK DQG 'HQQ\ f 7KHVH REVHUYDWLRQV PD\ KHOS WR H[SODLQ JURZWK GLIIHUHQFHV RI VXEPHUVHG PDFURSK\WHV RQ GLIIHUHQW VXEVWUDWH W\SHV 3RQG 3HDUVDOO 0LVUD 'HQQ\ f 7KH REMHFWLYH RI WKLV LQYHVWLJDWLRQ ZDV WR GHWHUPLQH LI K\GULOOD JURZWK DQG QXWULHQW DFFXPXODWLRQ DUH LQIOXHQFHG E\ GLIIHUHQW FRQFHQn WUDWLRQV RI H[WUDFWDEOH 1 3 &D )H 0J DQG &X LQ SUHSDUHG VXEVWUDWHV %HFDXVH WKHUH LV QR VWDQGDUGL]DWLRQ IRU GHWHUPLQLQJ QXWULHQW DYDLODELOLW\ RI K\GURVRLOV D VRLO H[WUDFWLRQ SURFHGXUH ZKLFK UHSRUWHGO\ FRXOG EH XVHG IRU GHWHUPLQLQJ WKH DYDLODELOLW\ RI D ZLGH UDQJH RI SODQW QXWULHQWV ZLWK D VLQJOH H[WUDFWLRQ RYHU D ZLGH UDQJH RI VRLO SURSHUWLHV ZDV LQYHVWLJDWHG 0HKOLFK 0HKOLFK f 7KLV H[WUDFWLRQ SURFHGXUH LI VDWLVIDFWRU\ FRXOG EH XVHIXO IRU IXWXUH QXWULHQW DQDO\VLV RI VXEPHUVHG VXEVWUDWHV 0DWHULDOV DQG 0HWKRGV )LYH VXEVWUDWHV ZHUH SUHSDUHG E\ HQULFKLQJ FRDUVH EXLOGHUV VDQG ZLWK YDU\LQJ YROXPHV RI DQ RUJDQLF PXFNVDQGf VRLO $Q DOLTXRW RI HDFK RI WKHVH VXEVWUDWHV ZDV SUHSDUHG IRU FKHPLFDO DQDO\VLV E\ RYHQ GU\LQJ WR FRQVWDQW ZHLJKW LQ D IRUFHGDLU GU\LQJ RYHQ DQG JULQGLQJ LQ

PAGE 22

D PRUWDU DQG SHVWOH WR SDVV D PHVK VFUHHQ &KHPLFDO DQDO\VLV ZDV SHUIRUPHG RQ IRXU VXEVDPSOHV IURP HDFK RI WKHVH DOLTXRWV 2UJDQLF PDWWHU 20f FRQWHQW ZDV HVWLPDWHG DV WKH SHUFHQW GU\ ZHLJKW ORVV RQ LJQLWLRQ LQ D PXIIOH IXUQDFH DW & IRU KU ([FKDQJHDEOH 1 ZDV GHWHUPLQHG E\ H[WUDFWLQJ J RI VRLO ZLWK PO 1 SRWDVVLXP FKORULGH IRU PLQ GLVWLOOLQJ WKH H[WUDFW LQ WKH SUHVHQFH RI PDJQHVLXP R[LGH DQG 'DYDUGDnV DOOR\ LQWR ERULF DFLG DQG EDFNWLWUDWLQJ ZLWK VXOIXULF DFLG %UHPPHU f ([FKDQJHDEOH 3 &D )H 0J DQG &X ZHUH H[WUDFWHG ZLWK D VROXWLRQ RI WKH IROORZLQJ FRPSRVLWLRQ 0HKOLFK 0HFKOLFK f 1 DFHWLF DFLG 1 DPPRQLXP QLWUDWH 1 DPPRQLXP IOXRULGH 1 QLWULF DFLG 1 ('7$ $OLTXRWV Jf RI D KLJKO\ RUJDQLF b 0f VXEVWUDWH ZKLFK ZDV FROOHFWHG IURP /DNH -DFNVRQ /HRQ &R )/f ZHUH VKDNHQ ZLWK PO RI H[WUDFW LQ PO (KUOHQPH\HU IODVNV IRU DQG PLQ WR GHWHUPLQH WKH HIIHFW RI H[WUDFWLRQ WLPH RQ QXWULHQW \LHOG 6XEVDPSOHV RI WKH SUHSDUHG VXEVWUDWHV ZHUH H[WUDFWHG DV DERYH IRU PLQXWHV $IWHU VKDNLQJ WKH H[WUDFW ZDV ILOWHUHG :KDWPDQ f LQWR JODVV YLDOV 'HWHUPLQDWLRQ RI 3 ZDV E\ DQ DVFRUELF DFLG PRO\EGDWH UHGXFWLRQ PHWKRG ZKLFK ZDV PRGLILHG IURP 0HKOLFK f DQG VWDQGDUG PHWKRGV $PHULFDQ 3XEOLF +HDOWK 6HUYLFH f DV IROORZV 7KH PL[HG UHDJHQW ZDV SUHSDUHG E\ FRPELQLQJ PO 1 VXOIXULF DFLG PO [ P DQWLPRQ\ SRWDVVLXP WDUWUDWH PO [ DPPRQLXP PRO\EGDWH J DVFRUELF DFLG DQG EULQJLQJ WR D ILQDO YROXPH RI &RORU ZDV GHYHORSHG ZLWK PO RI H[WUDFWDQW DQG PO RI PL[HG UHDJHQW &RQFHQWUDWLRQV RI &D )H 0J DQG &X LQ VRLO H[WUDFWV ZHUH GHWHUPLQHG E\ DWRPLF DEVRUSWLRQ VSHFWURSKRWRPHWU\ E\ WKH 8QLYHUVLW\ RI )ORULGD 6RLO 7HVWLQJ DQG $QDO\WLFDO 5HVHDUFK /DERUDWRU\ 0LWFKHOO DQG 5KXH f

PAGE 23

)LYH UHSOLFDWLRQV HDFK RI WKH SUHSDUHG VXEVWUDWHV ZHUH SODFHG LQ SODVWLF SRWV FP [ FP [ FPf DQG DUUDQJHG LQ WZR [ ODWLQ VTXDUHV VR WKDW VXEVWUDWH W\SHV ZHUH UDQGRPL]HG RYHU ERWK OLJKWLQJ HIIHFWV DQG ZDWHU IORZ LQ DQ LQGRRU ILEHUJODVV WDQN FP ORQJ [ FP ZLGHf 3RQGZDWHU 7DEOH f DW D GHSWK RI FP ZDV FRQWLQXDOO\ FLUFXODWHG WKURXJK WKH WDQN LQ VXFK D ZD\ WKDW ZDWHU HQWHUHG DW WKH ERWWRP RI RQH HQG RI WKH WDQN DQG H[LWHG DW WKH WRS RI WKH RWKHU HQG $ VLQJOH WHUPLQDO VKRRW RI K\GULOOD FP LQ OHQJWK ZDV SODFHG LQWR HDFK SRW 7KH K\GULOOD VKRRWV ZHUH REWDLQHG IURP D FXOWXUH ZKLFK ZDV JURZQ IURP WXEHUV XQGHU VLPLODU FRQGLWLRQV /LJKW ZDV SURYLGHG IRU KU E\ VRGLXP YDSRU ODPSV WKDW SURGXFHG \(PAVHF 3$5 DW WKH ZDWHU VXUIDFH LQ WKH FHQWHU RI WKH WDQN $IWHU JURZLQJ XQGHU WKHVH FRQGLWLRQV IRU ZHHNV SODQWV ZHUH UHPRYHG IRU ZHLJKW GHWHUPLQDWLRQ DQG FKHPLFDO DQDO\VLV 7KH H[SHULPHQW ZDV UHSHDWHG WZLFH RQFH EHJLQQLQJ LQ $SULO DQG RQFH EHJLQQLQJ LQ -XQH 7KH FRQFHQWUDWLRQ RI 3 LQ WKH LQFRPLQJ ZDWHU ZDV GHWHUPLQHG FRORUDPHWULFDOO\ E\ DVFRUELF DFLG PRO\EGDWH UHGXFWLRQ 0XUSK\ DQG 5LOH\ f DIWHU SHUVXOIDWH GLJHVWLRQV 0HQW]HO DQG &RUZLQ f 7RWDO .MHOGDKO QLWURJHQ 7.1f ZDV GHWHUPLQHG RQ LQFRPLQJ ZDWHU E\ VWHDP GLVWLOODWLRQ DFFRUGLQJ WR WKH PHWKRGV RI 1HOVRQ DQG 6RPPHUV f &RQFHQWUDWLRQV RI &D )H 0J DQG &X ZHUH GHWHUPLQHG DV H[WUDFWDEOH PHWDOV $PHULFDQ 3XEOLF +HDOWK 6HUYLFH f 'U\ ZHLJKW RI URRWV DQG VKRRWV ZDV GHWHUPLQHG VHSDUDWHO\ DIWHU GU\LQJ WR FRQVWDQW ZHLJKW DW & 3ODQW WLVVXH VKRRWV RQO\f REWDLQHG IURP DOO UHSOLFDWLRQV RI D SUHSDUHG VXEVWUDWH ZLWKLQ D ODWLQ VTXDUH ZHUH FRPELQHG IRU QXWULHQW DQDO\VLV 7KH SODQW WLVVXH GLJHVWLRQ SURFHGXUH ZDV DGRSWHG IURP .RFK DQG 0F0HHNLQ f 6DPSOH DOLTXRWV

PAGE 24

7DEOH &RQFHQWUDWLRQV RI QXWULHQWV PJPf PHDVXUHG LQ VRXUFH ZDWHU 1 7RWDOf 3 7RWDOf &D r )H 0J &X

PAGE 25

RI PJ ZHUH GLJHVWHG IRU KU RQ D GLJHVWLRQ EORFN DW & ZLWK PO RI b A62A $IWHU FRROLQJ WKH VDPSOHV ZHUH UHKHDWHG IRU PLQ ZLWK PO RI b +J2J 7KH ODVW SURFHVV ZDV UHSHDWHG XQWLO WKH VDPSOH VROXWLRQ EHFDPH FOHDU DQG WKHQ RQH DGGLWLRQDO WLPH D WRWDO RI WR WLPHVf )LQDOO\ WKH GLJHVW ZDV GLOXWHG WR PO $OO JODVVZDUH XVHG LQ WKH GLJHVWLRQ SURFHGXUH DQG WKH IROORZLQJ QXWULHQW DQDO\VHV ZDV DFLGZDVKHG ZLWK K\GURIOXRULF DFLG 1LWURJHQ ZDV GHWHUPLQHG DV IRU ZDWHU RQ D PO DOLTXRW RI WKH GLJHVW $QDO\VLV RI RWKHU QXWULHQWV ZDV SHUIRUPHG RQ SODQW GLJHVWV DV GHVFULEHG IRU VRLO H[WUDFWV $OO GDWD ZHUH DQDO\]HG DW WKH 1RUWKHDVW 5HJLRQDO 'DWD &HQWHU LQ *DLQHVYLOOH )/ XVLQJ WKH 6WDWLVWLFDO $QDO\VLV 6\VWHP 6$6f VWDWLVWLFDO VRIWZDUH 5HVXOWV DQG 'LVFXVVLRQ 6PDOO FRQILGHQFH OLPLWV RQ WKH PHDQV &/0f RI VXEVDPSOHV ZLWKLQ H[WUDFWLRQ WLPHV 7DEOH f IRU HDFK HOHPHQW DQDO\]HG LQ WKH /DNH -DFNVRQ VXEVWUDWH VKRZV D KLJK GHJUHH RI SUHFLVLRQ WKDW FDQ EH REWDLQHG XVLQJ WKH H[WUDFWLRQ SURFHGXUH 5HJUHVVLRQ DQDO\VLV \LHOGHG DQ LQVLJQLILFDQW VORSH FRHIILFLHQW D f ZKHQ FRQFHQWUDWLRQ ZDV UHJUHVVHG RYHU H[WUDFWLRQ WLPH DQG RQO\ WKH VKRUWHVW H[WUDFWLRQ WLPH \LHOGHG VLJQLILFDQWO\ ORZHU \LHOGV RI &D DQG 0J 7DEOH f ([WUDFWLRQ WLPH KDV D JUHDWHU HIIHFW RQ WKH DPRXQW RI 3 )H DQG &X H[WUDFWHG )LJXUH WKURXJK f ([WUDFWDEOH 3 DQG )H LQFUHDVH DV D IXQFWLRQ RI WLPH ZKHUHDV H[WUDFWDEOH &X GHFUHDVHV

PAGE 26

7DEOH 0HDQV DQG FRQILGHQFH OLPLWV RI H[WUDFWDEOH QXWULHQW FRQFHQWUDWLRQV XVLQJ GLIIHUHQW H[WUDFWLRQ WLPHV ZLWK 0HKOLFKnV H[WUDFWDQW ([WUDFWLRQ WLPH PLQf $YHUDJH &RQFHQWUDWLRQV PJNJf b &/0 PJNJf 3 &X )H &D 0J

PAGE 27

)LJXUH (IIHFW RI H[WUDFWLRQ WLPH ZLWK 0HKOLFKnV H[WUDFWDQW RQ H[WUDFWDEOH 3 GDVKHG OLQHV HQFORVH b FRQILGHQFH OLPLWV RQ SUHGLFWHG PHDQVf

PAGE 28

(;75$&7,21 7,0( PLQf (;75$&7$%/( 3 PJNJf 8! WR R FQ R 62,

PAGE 29

)LJXUH (IIHFW RI H[WUDFWLRQ WLPH ZLWK 0HKOLFKnV H[WUDFWDQW RQ H[WUDFWDEOH )H GDVKHG OLQHV HQFORVHG b FRQILGHQFH LPLWVf

PAGE 31

)LJXUH (IIHFW RI H[WUDFWLRQ WLPH ZLWK 0HKOLFKnV H[WUDFWDQW RQ H[WUDFWDEOH &X GDVKHG OLQHV HQFORVH b FRQILGHQFH LPLWVf

PAGE 32

(;75$&7$%/( &8 PJNJf

PAGE 33

)RU PRVW DSSOLFDWLRQV DQ H[WUDFWLRQ WLPH RI PLQXWHV ZLOO VXIILFLHQWO\ HVWLPDWH DOO RI WKH SODQW QXWULHQWV ZKLFK ZHUH VWXGLHG ZLWK WKH H[FHSWLRQ RI SHUKDSV &X $ PLQ H[WUDFWLRQ XQGHUHVWLPDWHV WKH PD[LPXP 3 \LHOG RI PLQ E\ b DQG XQGHUHVWLPDWHV WKH PD[LPXP )H \LHOG REWDLQHG ZLWK D PLQ H[WUDFWLRQ E\ b 7KH PDMRU SUREOHP RFFXUV ZLWK &X ZKHUH D PLQ H[WUDFWLRQ ZRXOG XQGHUHVWLPDWH E\ b WKH PD[LPXP YDOXH REWDLQHG ZLWK WKH PLQ H[WUDFWLRQ UHFRPPHQGHG E\ 0HKO LFK f 7KH JURZWK UHVSRQVH RI K\GULOOD ZDV VWXGLHG RYHU D ZLGH UDQJH RI QXWULHQW FRQFHQWUDWLRQV LQ WKH SUHSDUHG VXEVWUDWHV 7DEOH f %HFDXVH WKH VXEVWUDWHV ZHUH SUHSDUHG E\ PL[LQJ GLIIHUHQW OHYHOV RI WKH VDPH VDQG b 0f DQG RUJDQLF VRLO b 0f DOO RI WKH QXWULHQW FRQFHQWUDWLRQV DQG 0 ZLWKLQ D SDUWLFXODU VXEVWUDWH VKRXOG EH KLJKO\ FRUUHODWHG 7KLV UHODWLRQVKLS LV FRQVLVWHQW IRU DOO QXWULHQWV H[FHSW &X 7DEOH f 7KH ORZHU FRUUHODWLRQ RI &X ZLWK RWKHU QXWULHQWV VHHPV WR UHVXOW IURP D GHFUHDVH LQ H[WUDFWDELOLW\ RI &X DW WKH KLJKHU OHYHOV RI 0 DQG RWKHU QXWULHQWV FI 7DEOH DQG 7DEOH f 7KLV HIIHFW DSSHDUV WR RFFXU ZLWK )H EXW DSSDUHQWO\ WR D OHVVHU H[WHQW 7KLV PD\ QRW QHFHVVDULO\ LQGLFDWH D VKRUWFRPLQJ RI WKH H[WUDFWLRQ SURFHGXUH EXW PD\ EH D UHDO LQGLFDWLRQ RI QXWULHQW DYDLODELOLW\ $QDO\VLV RI YDULDQFH LQGLFDWHG WKDW WKHUH ZDV QR VLJQLILFDQW URZ RU FROXPQ HIIHFW RQ VKRRW ZHLJKW URRW ZHLJKW RU URRW WR VKRRW UDWLR ZLWKLQ WKH VHSDUDWH ODWLQ VTXDUHV RQ GLIIHUHQW H[SHULPHQWDO GDWHV QRU ZDV WKHUH DQ HIIHFW RI H[SHULPHQWDO GDWHV 2QH RI WKH ODWLQ VTXDUHV KRZHYHU LQ WKH $SULO H[SHULPHQW SURGXFHG D \LHOG UHVSRQVH VLJQLILFDQWO\ GLIIHUHQW S f IURP WKH RWKHU ODWLQ VTXDUHV 'DWD

PAGE 34

7DEOH &RQFHQWUDWLRQV RI QXWULHQWV DQG RUJDQLF PDWWHU FRQWHQW RI SUHSDUHG VXEVWUDWHV 20 1 3 &D )H 0J &X b SJJ f n

PAGE 35

IURP WKLV ODWLQ VTXDUH 1 f ZHUH WKHUHIRUH DQDO\]HG VHSDUDWHO\ IURP WKH FRPELQHG GDWD RI WKH UHPDLQLQJ WKUHH ODWLQ VTXDUHV 1 f %HFDXVH SODQW WLVVXH ZDV SRROHG ZLWKLQ ODWLQ VTXDUHV IRU WKH QXWULHQW DQDO\VLV SODQW WLVVXH QXWULHQW GDWD ZHUH DQDO\]HG WRJHWKHU 5HJUHVVLRQ DQDO\VLV LQGLFDWHG QRQVLJQLILFDQW VORSH FRHIILFLHQWV IRU ERWK JURXSV RI GDWD ZKHQ URRW ZHLJKW RU URRW WR VKRRW UDWLR ZDV UHJUHVVHG RYHU DQ\ RI WKH VRLO FKHPLFDO SDUDPHWHUV VWXGLHG 6LJQLILFDQW S f SRVLWLYH OLQHDU VORSH FRHIILFLHQWV ZHUH REWDLQHG ZKHQ VKRRW ZHLJKW ZDV UHJUHVVHG RYHU DQ\ RI WKH VRLO SDUDPHWHUV VWXGLHG VXJJHVWLQJ VXEVWUDWH UHODWHG QXWULHQW OLPLWDWLRQ WKURXJKRXW WKH UDQJH RI SUHSDUHG VXEVWUDWHV 7KH UHVSRQVHV RI VKRRW ZHLJKW WR 3 DQG FRQFHQWUDWLRQV LQ WKH VXEVWUDWHV DUH SUHVHQWHG LQ )LJXUHV DQG UHVSHFWLYHO\ DV H[DPSOHV KRZHYHU GXH WR WKH KLJK FRUUHODWLRQ EHWZHHQ FRQFHQWUDWLRQV RI QXWULHQWV LQ WKH VXEVWUDWHV 7DEOH f LW LV LPSRVVLEOH WR DVVLJQ FDXVH DQG HIIHFW EHWZHHQ VKRRW ZHLJKW DQG LQGLYLGXDO QXWULHQWV &RQFHQWUDWLRQ RI 1 &D 0J )H DQG &X LQ WKH SODQW WLVVXHV ZHUH QRW LQIOXHQFHG E\ FRQFHQWUDWLRQV RI QXWULHQWV LQ SUHSDUHG VXEVWUDWHV 7DEOH f 7KH WLVVXH FRQFHQWUDWLRQV RI 3 DQG ZHUH LQIOXHQFHG E\ WKH FRQFHQWUDWLRQV RI WKH UHVSHFWLYH QXWULHQWV LQ WKH VXEVWUDWHV +RZHYHU RQO\ WKH ORZHVW FRQFHQWUDWLRQ RI 3 LQ WKH VXEVWUDWH UHVXOWHG LQ D ORZHU WLVVXH FRQFHQWUDWLRQ RI 3 DIWHU ZKLFK WKH VORSH RI WKH UHJUHVVLRQ OLQH DSSURDFKHG ]HUR )LJXUH f DQG WKH HIIHFW RI FRQFHQWUDWLRQV RI LQ WKH VXEVWUDWH KDG RQO\ D OLPLWHG HIIHFW RQ WKH FRQFHQWUDWLRQ RI LQ K\GULOOD WLVVXH )LJXUH f &RQFHQWUDWLRQV RI 1 &D 0J )H DQG &X LQ K\GULOOD WLVVXHV ZHUH DERYH FULWLFDO OHYHOV IRU ZDWHUZHHG *HUORII f 7DEOH )LJXUH f 7KH FRQFHQWUDWLRQ RI 3 LQ K\GULOOD WLVVXH ZDV RQO\

PAGE 36

7DEOH &RUUHODWLRQ EHWZHHQ FRQFHQWUDWLRQV RI H[WUDFWDEOH QXWULHQWV LQ SUHSDUHG VXEVWUDWHV 3HDUVRQ SURGXFW PRPHQW FRUUHODWLRQ FRHIILFLHQWV 3f 1 3 &D 0J )H &X 20 1 3 &D 0J )H

PAGE 37

7DEOH &RQFHQWUDWLRQV RI QXWULHQWV LQ K\GULOOD WLVVXH DQG FULWLFDO OHYHOV RI WKHVH QXWULHQWV LQ ZDWHUZHHG *HUORII f 1XPEHUV LQ SDUHQWKHVHV DUH VWDQGDUG HUURUV RI WKH PHDQ &RQFHQWUDWLRQ LQ (OHPHQW +\GULOOD 7LVVXH ^b GU\ ZWf &ULWLFDO OHYHO ^b GU\ ZWf 1 f &D f )H f 0J f &X f

PAGE 38

)LJXUH
PAGE 39

6+227 :(,*+7 J GU\ ZWf

PAGE 40

)LJXUH
PAGE 41

6+227 :(,*+7 J GU\ ZWf &21&(175$7,21 ,1 68%675$7( PJNJf

PAGE 42

)LJXUH &RQFHQWUDWLRQV RI 3 LQ K\GUL+D WLVVXH LQ UHVSRQVH WR LQFUHDVLQJ FRQFHQWUDWLRQV RI 3 LQ WKH VXEVWUDWH 9HUWLFDO EDUV UHSUHVHQW FRQILGHQFH OLPLWV RQ WKH SUHGLFWHG PHDQV *HUORIInV f FULWLFDO OHYHO IRU ZDWHUZHHG bf

PAGE 43

3 &21&(175$7,21 ,1 68%675$7( 3 &21&(175$7,21 ,1 +<'5,//$ 7,668( b GU\ ZWf

PAGE 44

)LJXUH &RQFHQWUDWLRQ RI LQ K\GULOOD WLVVXH LQ UHVSRQVH WR LQFUHDVLQJ FRQFHQWUDWLRQV RI LQ WKH VXEVWUDWH 9HUWLFDO EDUV UHSUHVHQW FRQILGHQFH OLPLWV RQ SUHGLFWHG PHDQV *HUORIInV f FULWLFDO OHYHO IRU ZDWHUZHHG f

PAGE 45

. &21&(175$7,21 ,1 +<'5,//$ 7,668( b GU\ ZWf 8! UYM

PAGE 46

VOLJKWO\ EHORZ *HUORIInV FULWLFDO OHYHO DW WKH ORZHVW FRQFHQWUDWLRQ RI 3 LQ WKH VXEVWUDWH )LJXUH f &RQFHQWUDWLRQV RI WKHVH QXWULHQWV DERYH FULWLFDO OHYHOV IRU RSWLPXP JURZWK DQG WKH FRQVWDQW FRQFHQWUDWLRQ RYHU YDU\LQJ FRQFHQWUDWLRQV LQ WKH VXEVWUDWHV PD\ VXJJHVW WKDW QRQH RI WKHVH QXWULHQWV ZHUH OLPLWLQJ WR JURZWK +RZHYHU VLQFH VKRRW ZHLJKW LQFUHDVHG DV FRQFHQWUDWLRQV RI QXWULHQWV LQ WKH VXEVWUDWHV LQFUHDVHG WKH WRWDO DPRXQW RI DVVLPLODWHG QXWULHQWV DOVR LQFUHDVHG ,W FDQ WKHUHIRUH EH UHDVRQHG WKDW DV QXWULHQW DYDLODELOLW\ LQ WKH VXEVWUDWHV LQFUHDVHG WKH UDWH RI QXWULHQW DVVLPLODWLRQ LQFUHDVHG DQG DOORZHG IRU D SURSRUWLRQDO LQFUHDVH LQ FDUERQ GLR[LGH DVVLPLODWLRQ PHDVXUHG DV GU\ ZHLJKW 7KRVH QXWULHQWV ZKLFK ZHUH QRW DW OLPLWLQJ FRQFHQWUDWLRQV ZHUH DSSDUHQWO\ DEVRUEHG SURSRUWLRQDOO\ WR WKH OLPLWLQJ QXWULHQWVf &RQFOXVLRQV 7KH VRLO H[WUDFWDQW XVHG LQ WKLV LQYHVWLJDWLRQ 0HKOLFK f SURYHG VDWLVIDFWRU\ IRU HVWLPDWLQJ FRQFHQWUDWLRQV RI H[WUDFWDEOH 3 &D 0J DQG )H +RZHYHU ZLWK D KLJKO\ RUJDQLF K\GURVRLO WKH DPRXQW RI &X H[WUDFWHG ZDV YHU\ VHQVLWLYH WR H[WUDFWLRQ WLPH ZKLOH DPRXQWV RI 3 DQG )H H[WUDFWHG ZHUH VHQVLWLYH WR D OHVVHU H[WHQW +\GULOOD JURZWK LQFUHDVHG OLQHDUO\ LQ UHVSRQVH WR LQFUHDVLQJ FRQFHQWUDWLRQV RI QXWULHQWV DV PHDVXUHG ZLWK WKH QHZ H[WUDFWDQW

PAGE 47

&+$37(5 +<'5262,/ 5(/$7(' 1875,7,21 2) 68%0(56(' 0$&523+<7(6 ,1 6(9(1 )/25,'$ /$.(6 ,QWURGXFWLRQ +\GURVRLO FKDUDFWHULVWLFV PD\ LQIOXHQFH WKH JURZWK DQG GLVWULEXWLRQ RI VXEPHUVHG PDFURSK\WHV LQ ODNHV 3RQG 3HDUVDOO 0LVUD 'HQQ\ f (YLGHQFH IRU URRW XSWDNH RI QXWULHQWV E\ VHYHUDO VXEPHUVHG VSHFLHV %ULVWRZH DQG :KLWFRPEH 'H0DUWH DQG +DUWPDQ :HOVK DQG 'HQQ\ %DUNR DQG 6PDUW f LQGLFDWH WKDW WKLV LQIOXHQFH PD\ EH UHODWHG WR QXWULHQW DYDLODELOLW\ LQ WKH K\GURVRLO DQG LW KDV EHHQ VXJJHVWHG WKDW WKLV QXWULHQW VRXUFH LV D GRPLQDQW IDFWRU LQIOXHQFLQJ VXEPHUVHG PDFURSK\WH JURZWK &DULJQDQ DQG .DOII f +RZHYHU VLQFH IROLDU XSWDNH RI QXWULHQWV FDQ DOVR RFFXU WKH UHODWLYH LPSRUWDQFH RI WKH K\GURVRLO DQG ZDWHU DV D VRXUFH RI QXWULHQWV LV VWLOO LQ TXHVWLRQ &ROH DQG 7RHW] f $ ZLGH UDQJH RI QXWULHQW FRQGLWLRQV DQG VXEPHUVHG PDFURSK\WH DEXQGDQFH LQ )ORULGD ODNHV VXJJHVWV QXWULHQW UHODWHG JURZWK OLPLWDWLRQ )RU H[DPSOH K\GULOOD RIWHQ FDXVHV VHYHUH ZHHG SUREOHPV E\ SURGXFLQJ GHQVH LQIHVWDWLRQV LQ PDQ\ ODNHV EXW KDV QRW SUROLIHUDWHG LQ RWKHU ODNHV VXFK DV /DNH -DFNVRQ /HRQ &R )/f RU /DNH .HUU 0DULRQ &R )/f DQG VHHPLQJO\ GLVDSSHDUHG IURP /DNH 'RZQ 2UDQJH &R )/f DIWHU LWV LQWURGXFWLRQ ,I K\GURVRLOV DUH WKH GRPLQDQW VRXUFH RI QXWULHQWV WR VXEPHUVHG PDFURSK\WHV WKHQ ELRPDVV VKRXOG EH UHODWHG WR FRQFHQWUDWLRQV RI QXWULHQWV LQ WKH K\GURVRLO ZKHQ QXWULHQW DYDLODELOLW\ LV OLPLWLQJ WR JURZWK 7KLV UHODWLRQVKLS KDV QRW EHHQ VWXGLHG XQGHU QDWXUDO FRQGLWLRQV

PAGE 48

DQG PD\ H[SODLQ WKH ODFN RI K\GULOOD JURZWK LQ /DNHV .HUU -DFNVRQ DQG 'RZQ 7KH REMHFWLYH RI WKLV VWXG\ ZDV WR GHWHUPLQH WKH LPSRUWDQFH RI 1 3 &D 0J )H DQG &X FRQFHQWUDWLRQV LQ K\GURVRLO RQ WKH ELRPDVV DQG QXWULHQW FRQWHQW RI VXEPHUVHG PDFURSK\WHV LQ )ORULGD ODNHV ZLWK GLIIHULQJ ZDWHU FKHPLVWU\ 0DWHULDOV DQG 0HWKRGV 6L[ ODNHV ZHUH VDPSOHG GXULQJ -DQXDU\ DQG )HEUXDU\ ZLQWHU VDPSOLQJf DQG 6HSWHPEHU DQG 2FWREHU IDOO VDPSOLQJf 7DEOH f /DNH -DFNVRQ ZDV QRW VDPSOHG GXULQJ WKH IDOO GXH WR ORZ ZDWHU /DNH 'RZQ ZDV LQFOXGHG LQ WKH IDOO DV D VXEVWLWXWH )DWKRPHWHU 5D\WKHRQ '( 3UHFLVLRQ 6XUYH\ )DWKRPHWHU 'HSWK 5HFRUGHUf WUDFLQJV ZHUH PDGH GXULQJ HDFK VDPSOLQJ DORQJ WUDQVHFWV WKDW ZHUH HVWDEOLVKHG EHWZHHQ IL[HG ODQGPDUNV LQ HDFK ODNH $SSHQGL[ f %XR\V ZHUH GURSSHG DORQJ WKH WUDQVHFWV WR PDUN UHSUHVHQWDWLYH YHJHWDWLRQ DQG IL[PDUNV ZHUH GUDZQ VLPXOWDQHRXVO\ RQ WKH IDWKRPHWHU WUDFLQJ $W HDFK EXR\ D SODQW ELRPDVV VDPSOH DQG D K\GURVRLO VDPSOH ZHUH FROOHFWHG 3ODQW ELRPDVV ZDV VDPSOHG ZLWK D ELRPDVV VDPSOHU VLPLODU WR WKH RQH GHVFULEHG E\ 1DOO DQG 6FKDUGW f 'XULQJ WKH IDOO VDPSOLQJ DQ LPSURYHG EXFNHW GHVLJQHG E\ WKH 86$( :(6 9LFNVEXUJ 06f ZDV XVHG +\GURVRLO VDPSOHV ZHUH FROOHFWHG HLWKHU GLUHFWO\ IURP WKH ELRPDVV VDPSOLQJ EXFNHW RU E\ GURSSLQJ D 3RQDU GUHGJH WKURXJK WKH KROH LQ WKH YHJHWDWLRQ FUHDWHG E\ WKH VDPSOHU $OO VDPSOHV ZHUH SODFHG RQ LFH SULRU WR SUHSDUDWLRQ IRU DQDO\VLV 5HVXOWV DQG 'LVFXVVLRQ &RQFHQWUDWLRQ UDJQHV RI 1 LQ WKH K\GURVRLO ZHUH VLPLODU DPRQJ WKH ODNHV 7DEOH f VXJJHVWLQJ WKDW WKH ODUJH GLIIHUHQFHV LQ ELRPDVV

PAGE 49

7DEOH /RFDWLRQV RI VWXG\ ODNHV DQG GDWHV RI K\GURVRLO DQG VXEPHUVHG PDFURSK\WH ELRPDVV VDPSOLQJ /DNH /RFDWLRQ 2NDKXPSND 6 76 5( /RFKORRVD 6 7LO6 5( )DLUYLHZ 6 76 5( 6WHOOD 6 76 5( -DFNVRQ 6 71 5: 'RZQ 6 76 5( .HUU 6 76 5( 6DPSOLQJ 'DWHV f :LQWHU )DOO -DQXDU\ 6HSWHPEHU )HEUXDU\ 6HSWHPEHU -DQXDU\ 6HSWHPEHU -DQXDU\ 6HSWHPEHU )HEUXDU\ f§ 2FWREHU -DQXDU\ 6HSWHPEHU

PAGE 50

7DEOH &XPXODWLYH IUHTXHQF\ RI H[FKDQJHDEOH QXWULHQWV PJ K\GURVRLOf LQ WKH K\GURVRLO RI VL[ )ORULGD ODNHV LQ 6HSWHPEHU DQG 2FWREHU /DNH b b b b b 1 2NDKXPSND /RFKORRVD )DLUYLHZ 6WHOOD 'RZQ .HUU 2NDKXPSND 3 /RFKORRVD )DLUYLHZ 6WHOOD 'RZQ .HUU 2NDKXPSND /RFKORRVD )DLUYLHZ 6WHOOD 'RZQ .HUU &D 2NDKXPSND /RFKORRVD )DLUYLHZ 6WHOOD 'RZQ .HUU 0J 2NDKXPSD /RFKORRVD )DLUYLHZ 6WHOOD 'RZQ .HUU

PAGE 51

7DEOH &RQWLQXHG /DNH b b b b b )H 2NDKXUDSND /RFKORRVD )DLUYLHZ 6WHOOD 'RZQ .HUU &X 2NDKXPSND /RFKORRVD )DLUYLHZ 6WHOOD 'RZQ .HUU

PAGE 52

7DEOH $YHUDJH VXEPHUVHG PDFURSK\WH ELRPDVV PHDVXUHG LQ VHYHQ )ORULGD ODNHV LQ 6XEPHUVHG 0DFURSK\WH ELRPDVV J GU\ ZWPAf -DQXDU\ )HEUXDU\ 6HSWHPEHU 2FWREHU 2NDKXPSND /RFKORRVD r )DLUYLHZ 6WHOOD -DFNVRQ f§ 'RZQ f§ .HUU

PAGE 53

7DEOH f FRXOG QRW EH DWWULEXWHG WR 1 DYDLODELOLW\ LQ WKH K\GURVRLO /DUJH GLIIHUHQFHV LQ 3 &D 0J )H DQG &X FRQFHQWUDWLRQV ZHUH HQFRXQWHUHG DPRQJ ODNHV KRZHYHU WKHVH GLIIHUHQFHV GR QRW DSSHDU UHODWHG WR WKH ODUJH GLIIHUHQFHV LQ PDFURSK\WH ELRPDVV FI 7DEOH DQG 7DEOH f RU ZLWK RWKHU WURSKLF VWDWH LQGLFDWRUV VXFK DV 1 FRQFHQWUDWLRQ RI ZDWHU RU FKORURSK\OO DA FRQFHQWUDWLRQ FL? 7DEOH DQG 7DEOH f 5HODWLRQVKLSV EHWZHHQ LQGLYLGXDO VSHFLHV ELRPDVV ZKHUH D VSHFLHV ZDV HQFRXQWHUHG LQ VXIILFLHQW QXPEHU $SSHQGL[ f DQG K\GURVDLO QXWULHQW FRQFHQWUDWLRQV $SSHQGL[ f ZLWKLQ ODNHV ZHUH DQDO\]HG E\ VWHSZLVH UHJUHVVLRQ ZLWK VWHSZLVH HQWU\ DW D HQWU\ OHYHO 6$6 ,QVWLWXWH ,QF f :DWHU GHSWK DQG K\GURVRLO RUJDQLF PDWWHU 0f $SSHQGL[ f ZHUH LQFOXGHG LQ WKLV DQDO\VLV 7KH UHVXOWLQJ UHJUHVVLRQ HTXDWLRQV DUH SUHVHQWHG LQ 7DEOH DORQJ ZLWK WKH SURSRUWLRQV RI WKH WRWDO VXPV RI VTXDUHV ZKLFK DUH H[SODLQHG E\ WKH LQGLYLGXDO YDULDEOHV FDOFXODWHG IURP VHTXHQWLDO VXPV RI VTXDUHVf 6LJQLILFDQW QXWULHQW HIIHFWV RQ ELRPDVV ZHUH QRW REVHUYHG LQ WKH ZLQWHU LQ /DNHV .HUU )DLUYLHZ DQG /RFKORRVD ZKLFK PD\ EH GXH WR DQQXDO VHQHVFHQFH RI K\GULOOD %HUJ f 7KH VLJQLILFDQW HIIHFWV LQ 7DEOH DUH LQFRQVLVWHQW DPRQJ VSHFLHV DQG ODNHV DQG ZKHUH D QXWULHQW KDV D VLJQLILFDQW HIIHFW RQ ELRPDVV RQO\ D VPDOO SURSRUWLRQ RI WKH WRWDO VXPV RI VTXDUHV LV H[SODLQHG 7KH RFFDVLRQDO QHJDWLYH HIIHFWV LPSOLHG IRU 3 &D DQG )H DUH GLIILFXOW WR H[SODLQ KRZHYHU FRQVLGHULQJ WKH YHU\ VPDOO FRQWULEXWLRQV WR WKH PRGHOV LQ PRVW RI WKHVH FDVHV WKH\ DUH XQLPSRUWDQW HIIHFWV ,Q RUGHU WR UHPRYH WKH SRVVLEOH FRPSHWLWLYH HIIHFWV RI RQH VSHFLHV RYHU DQRWKHU VSHFLHV ZHLJKWV ZHUH VXPPHG RYHU LQGLYLGXDO EXR\V DQG WKH UHVXOWLQJ WRWDO ELRPDVV YDOXHV ZHUH UHJUHVVHG RYHU K\GURVRLO QXWULHQW

PAGE 54

7DEOH 5HJUHVVLRQ PRGHOV UHODWLQJ VXEPHUVHG PDFURSK\WH ELRPDVV WR FRQFHQWUDWLRQV RI QXWULHQWV LQ K\GURVRLO \ ELRPDVV DOO UHJUHVVLRQ FRHIILFLHQWV DUH VLJQLILFDQWO\ JUHDWHU WKDQ DW D OHYHO RI SUREDELOLW\ E\ VWXGHQWV W QXPEHUV LQ SDUHQWKHVHV LQGLFDWH WKH SURSRUWLRQ RI WKH WRWDO VXPV RI VTXDUHV H[SODLQHG E\ WKH YDULDEOH DERYH LWf /DNH &RPPRQ QDPH 5HJUHVVLRQ 6HSWHPEHU 2FWREHU 'RZQ ERJPRVV \ /RJLR)H /RJ&X f f )DLUYLHZ K\GULOOD \ f )DLUYLHZ ,OOLQRLV SRQGZHHG \ 3 /RJ)H 'HSWK f f f .HUU K\GULOOD \ /RJ3 /RJ20 f f .HUU ERJPRVV \ /RJ&D f /RFKORRVD K\GULOOD \ 0J f f 6WHOOD K\GULOOD \ 3 f 2NDKXPSND K\GULOOD \ /RJL. /RJ0J f f -DQXDU\ )HEUXDU\ )DLUYLHZ K\GULOOD \ /RJ'HSWK f .HUU K\GULOOD 1R VLJQLILFDQFH .HUU ERJPRVV 1R VLJQLILFDQFH /RFKORRVD K\GUL D 1R VLJQLILFDQFH 2NDKXPSND K\GULOOD 1R VLJQLILFDQFH 6WHOOD K\GULOOD \ &D /RJ)H f f f

PAGE 55

7DEOH /DNH 2NDKXPSND /RFKORRVD )DLUYLHZ 6WHOOD 'RZQ .HUU $PRQJ ODNHV 2NDKXPSND /RFKORRVD )DLUYLHZ 6WHOOD -DFNVRQ .HUU $PRQJ ODNHV 5HJUHVVLRQ PRGHOV UHODWLQJ WRWDO VXEPHUVHG PDFURSK\WH ELRPDVV WR FRQFHQWUDWLRQV RI QXWULHQWV LQ K\GURVRLO \ ELRPDVV DOO UHJUHVVLRQ FRHIILFLHQWV DUH VLJQLILFDQWO\ JUHDWHU WKDQ DW D OHYHO RI SUREDELOLW\ E\ VWXGHQW W QXPEHUV LQ SDUHQWKHVHV LQGLFDWH WKH SURSRUWLRQ RI WKH WRWDO VXPV RI VTXDUHV H[SODLQHG E\ WKH YDULDEOH DERYHf 6HSWHPEHU 2FWREHU 5HJUHVVLRQ \ /RJ. /RJL0J f f \ /RJ. &D 0J f f f \ f \ 3 \ /RJ)H /RJ&X f f \ &D f f \ ,. 0J f f -DQXDU\ )HEUXDU\ 1R VLJQLILFDQFH \ 3 f < /RJ3 f \ 1 &D f f f 1R VLJQLILFDQFH \ 1 f 1R VLJQLILFDQFH

PAGE 56

FRQFHQWUDWLRQV 20 DQG GHSWK 7DEOH f &RQFHQWUDWLRQV RI LQ WKH K\GURVRLO KDG D VLJQLILFDQW HIIHFW RQ PDFURSK\WH ELRPDVV LQ /DNHV 2NDKXPSND /RFKORRVD )DLUYLHZ DQG .HUU LQ WKH IDOO ,Q WKH ZLQWHU FRQFHQWUDWLRQ LQ WKH K\GURVRLO H[SODLQHG b RI WKH PDFURSK\WH ELRPDVV YDULDELOLW\ LQ /DNH 6WHOOD DQG &D H[SODLQHG b &RQFHQWUDWLRQV RI 3 LQ WKH K\GURVRLO KDG D SRVLWLYH HIIHFW RQ PDFURSK\WH ELRPDVV LQ /DNH 6WHOOD LQ IDOO DQG )DLUYLHZ LQ ZLQWHU +\GURVRLO FRQFHQWUDWLRQV RI 1 H[SODLQHG b RI WKH YDULDELOLW\ RI ELRPDVV LQ /DNH .HUU LQ ZLQWHU ,Q QR FDVH ZDV D ODUJH SURSRUWLRQ RI WKH YDULDELOLW\ RI ELRPDVV H[SODLQHG E\ K\GURVRLO QXWULHQW FRQFHQWUDWLRQ :KHQ WRWDO ELRPDVV LV UHJUHVVHG RYHU K\GURVRLO QXWULHQW FRQFHQWUDWLRQV DPRQJ ODNHV RQO\ b RI WKH YDULDQFH FDQ EH H[SODLQHG E\ K\GURVRLO QXWULHQW FRQFHQWUDWLRQV E\ WKH IDOO GDWD 7KH QHJDWLYH UHVSRQVH WR 0J FRQFHQWUDWLRQ ZKLFK DFFRXQWV IRU b RI WKH YDULDQFH LV GLIILFXOW WR H[SODLQ 1R VLJQLILFDQW HIIHFWV RI K\GURVRLO QXWULHQW FRQFHQWUDWLRQ RQ SODQW ELRPDVV ZHUH REVHUYHG DPRQJ ODNHV LQ ZLQWHU +\GURVRLO QXWULHQW FRQFHQWUDWLRQV GLG QRW H[SODLQ D ODUJH SRUWLRQ RI VXEPHUVHG PDFURSK\WH ELRPDVV RU QXWULHQW FRQWHQW YDULDELOLW\ 3DUW RI WKH XQH[SODLQHG YDULDELOLW\ PD\ UHVXOW IURP WKH PHWKRG RI VDPSOLQJ E\ 3RQDU GUHGJH RU ELRPDVV VDPSOHU KRZHYHU LW LV EHOLHYHG WKDW WKH VDPSOHV UHSUHVHQW WKH URRW ]RQH RI VXEPHUVHG PDFURSK\WHV ERWK PHWKRGV \LHOG VDPSOHV IURP FD WKH WRS FP RI K\GURVRLO XQGHU PRVW FRQGLWLRQVf 2WKHU IDFWRUV VXFK DV QXWULHQW DYDLODELOLW\ LQ WKH ZDWHU DSSDUHQWO\ FRQWURO VXEPHUVHG PDFURSK\WH ELRPDVV LQ WKH ODNHV VWXGLHG 3ODQW WLVVXH QXWULHQW FRQFHQWUDWLRQV $SSHQGL[ f ZHUH UHJUHVVHG RYHU WKH FRQFHQWUDWLRQV RI WKH FRUUHVSRQGLQJ QXWULHQWV LQ K\GURVRLOV $SSHQGL[ f )HZ VLJQLILFDQW HIIHFWV ZHUH REVHUYHG LQ WKLV DQDO\VLV

PAGE 57

7DEOH f $OWKRXJK VPDOO SURSRUWLRQV RI WKH YDULDELOLW\ DUH H[SODLQHG D QHJDWLYH UHODWLRQVKLS RFFXUV IUHTXHQWO\ IRU 0J ,I DQ\ RI WKH QXWULHQWV ZKLFK DV UHJUHVVLRQ DQDO\VLV VXJJHVWV KDYH DQ HIIHFW RQ SODQW ELRPDVV DUH FDXVLQJ JURZWK OLPLWDWLRQ DQ LQFUHDVH LQ JURZWK LV H[SHFWHG DV WKH FRQFHQWUDWLRQ RI WKDW QXWULHQW LQFUHDVHV LQ WKH SODQW WLVVXH 1RQH RI WKH VLJQLILFDQW FRUUHODWLRQV EHWZHHQ SODQW ELRPDVV DQG SODQW WLVVXH QXWULHQW FRQFHQWUDWLRQV 7DEOH f VXSSRUW WKH UHJUHVn VLRQ PRGHOV LQ 7DEOH DJDLQ VXJJHVWLQJ WKDW K\GURVRLO UHODWHG QXWULHQW OLPLWDWLRQ LV QRW LPSRUWDQW LQ WKHVH ODNHV 7KH IHZ VLJQLILFDQW SRVLWLYH FRUUHODWLRQV ZKLFK DSSHDU LQ 7DEOH PD\ VXJJHVW QXWULHQW OLPLWDWLRQ KRZHYHU D KLJK FRUUHODWLRQ ZDV RQO\ REVHUYHG EHWZHHQ ELRPDVV DQG )H 7KH QHJDWLYH FRUUHODWLRQV PD\ UHIOHFW WKH IDFW WKDW JUHDWHU ELRPDVV UHVXOWV IURP ODUJHU PRUH UREXVW SODQWV ZLWK JUHDWHU VWUXFWXUDO PDWHULDO DQG FDUERQ FRQWHQW ZKLFK FDXVH D VPDOOHU HOHPHQWDO FRQWHQW WR GU\ ZHLJKW UDWLR ,I QXWULHQW OLPLWDWLRQ RI VXEPHUVHG PDFURSK\WHV LV RFFXUULQJ LQ WKH VWXG\ ODNHV WLVVXH QXWULHQW FRQFHQWUDWLRQV ZKLFK DUH EHORZ FULWLFDO OHYHOV IRU RSWLPXP JURZWK VKRXOG RFFXU LQ IDOO ZKHQ JURZWK LV DSSURDFKLQJ PD[LPDO 8QIRUWXQDWHO\ HVWDEOLVKHG FULWLFDO OHYHOV DUH QRW DYDLODEOH IRU DQ\ RI WKH SODQW VSHFLHV ZKLFK ZHUH HQFRXQWHUHG LQ D VXIILFLHQW QXPEHU RI VDPSOHV IURP ZKLFK WR PDNH LQIHUHQFHV )HUORII f KDV VXJJHVWHG FULWLFDO OHYHOV IRU ZDWHUZHHG D FORVHO\ UHODWHG VSHFLHV IDPLO\ +\GURFKDULWDFHDHf WR K\GULOOD &RPSDULQJ QXWULHQW FRQFHQWUDWLRQV RI K\GULOOD WLVVXHV FROOHFWHG GXULQJ IDOO WR *HUORIInV FULWLFDO OHYHOV )LJXUHV WKURXJK f VKRXOG JLYH VRPH LQGLFDWLRQ RI QXWULHQW OLPLWDWLRQ WR K\GULOOD JURZWK &DUH PXVW EH WDNHQ KRZHYHU LQ WKHVH LQWHUSUHWDWLRQV EHFDXVH WZR GLIIHUHQW JHQHUD DUH EHLQJ FRPSDUHG DQG

PAGE 58

7DEOH 5HJUHVVLRQ HTXDWLRQV WKDW UHODWH OHYHOV RQ QXWULHQWV LQ ODNH VXEVWUDWHV WR OHYHOV RI WKH FRUUHVSRQGLQJ QXWULHQWV LQ WLVVXHV RI URRW SURGXFLQJ VXEPHUVHG PDFURSK\WHV DOO GDWD LV IURP IDOO VDPSOLQJ DOO UHJUHVVLRQ FRHIILFLHQWV DQG LQWHUFHSW HVWLPDWHV DUH VLJQLILFDQW DW WKH OHYHOV RI SUREDELOLW\f /DNH 6SHFLHV 5HJUHVVLRQ U 2NDKXPSND K\GULD 3ODQW. /RJ K\GURVRLO. )DLUYLHZ ,OOLQRLV SRQGZHHG 3ODQW3 K\GURVRLO3 )DLUYLHZ K\GUL D 3ODQW0J K\GURVRLO0J )DLUYLHZ K\GULD 3ODQW1 /RJ K\GURVRLO1 /RFKORRVD K\GUL OD 3ODQW0J /RJL K\GURVRLO0J 6WHOOD K\GUL OD 3ODQW0J O /RJ K\GURVRLO0J 6WHOOD K\GULOOD 3ODQW1 /RJ K\GURVRLO1 'RZQ ERJPRVV 3ODQW0J K\GURVRLO0J .HUU ERJPRVV 3ODQW0J K\GURVRLO0J

PAGE 59

7DEOH 3HDUVRQ SURGXFWPRPHQW FRUUHODWLRQ FRHIILFLHQWV EHWZHHQ SODQW WLVVXH QXWULHQW FRQFHQWUDWLRQV DQG SODQW ELRPDVV S f &RPPRQ QDPH 1 3 &D 0J )H &X 6HSWHPEHU 2FWREHU EDFRSD QV QV QV QV QV QV K\GUL D QV QV QV QV QV QV ERJPRVV QV QV QV ,OOLQRLV SRQGZHHG QV QV QV QV QV QV -DQXDU\ )HEUXDU\ EDFRSD QV QV QV QV QV QV QV K\GULOOD QV QV QV QV QV ERJPRVV QV QV QV QV QV QV ,OOLQRLV SRQGZHHG QV QV QV QV QV QV QV

PAGE 60

EHFDXVH *HUORIInV YDOXHV DUH EDVHG XSRQ LQGLFDWRU VHJPHQWV DQG YDOXHV LQ WKLV VWXG\ DUH EDVHG XSRQ FRPSRVLWH WLVVXH VDPSOHV ,Q DGGLWLRQ WKH YDOXHV IURP /DNH 2NDKXPSND FDQ EH FRPSDUHG WR WKH RWKHU ODNHV LQ WKH VWXG\ /DNH 2NDKXPSND LV D VKDOORZ HXWURSKLF ODNH LQ ZKLFK K\GULOOD VXUIDFHPDWV HDUO\ LQ WKH \HDU DQG UHPDLQV LQ WKLV FRQGLWLRQ LQWR ZLQWHU PRQWKV ,W FDQ EH DVVXPHG WKHUHIRUH WKDW FRPSHWLWLRQ IRU DYDLODEOH VSDFH RFFXUV EHIRUH QXWULHQW OLPLWDWLRQ UHVXOWV LQ WKLV ODNH DQG QXWULHQW FRQFHQWUDWLRQV RI K\GULOOD WLVVXHV IURP /DNH 2NDKXPSND UHSUHVHQW DW OHDVW DGHTXDWH FRQFHQWUDWLRQV 1LWURJHQ FRQFHQWUDWLRQV RI K\GULOOD WLVVXH IURP /DNH 2NDKXPSND DQG /DNH /RFKORRVD DUH ERWK ZHOO DERYH WKH *HUORII FULWLFDO OHYHOV )LJXUH f KRZHYHU DERXW b RI WKH WLVVXH VDPSOHV IURP /DNH )DLUYLHZ DQG /DNH 6WHOOD DUH EHORZ WKH *HUORII FULWLFDO OHYHOV %HFDXVH WKHVH FRQFHQWUDWLRQV DUH DOVR EHORZ WKH WKH PLQLPXP YDOXHV LQ /DNH 2NDKXPSND DQG /DNH /RFKORRVD LW ZRXOG DSSHDU WKDW 1 PD\ EH OLPLWLQJ WR K\GULOOD JURZWK LQ FHUWDLQ DUHDV RI WKHVH ODNHV %RWK /DNH )DLUYLHZ DQG /DNH 6WHOOD SURGXFH KLJK GHQVLWLHV RI K\GULOOD LQ QXLVDQFH SURSRUWLRQV WKHUHIRUH ZKHQ WKLV OLPLWDWLRQ WR JURZWK RFFXUV LW GRHV QRW EHFRPH LPSRUWDQW XQWLO KLJK SODQW ELRPDVV LV DWWDLQHG 6LQFH QR UHODWLRQVKLS EHWZHHQ K\GURVRLO QXWULHQW FRQFHQWUDWLRQV DQG ELRPDVV RU SODQW WLVVXH QXWULHQW FRQFHQWUDn WLRQV ZDV LQGLFDWHG WKH DSSDUHQW 1 OLPLWDWLRQ GRHV QRW VHHP WR EH K\GURVRLO UHODWHG /DNH 2NDKXPSND DQG /DNH /RFKORRVD DOVR KDYH WKH KLJKHVW PHDVXUHG FRQFHQWUDWLRQ RI WRWDO 1 LQ WKH ZDWHU FROXPQ 7DEOH f 7KHVH REVHUYDWLRQV VXJJHVW D GRPLQDQW UROH RI WKH ZDWHU FROXPQ DV D VRXUFH RI 1 WR K\GULOOD 6LQFH RQO\ DERXW b RI /DNH .HUU K\GULOOD WLVVXHV FRQWDLQHG OHVV WKDQ WKH *HUORII FULWLFDO OHYHO RI 1 DQG WKH UHPDLQGHU KDG FRQFHQWUDWLRQV HTXLYDOHQW WR WKRVH RI /DNH 2NDKXPSND DQG

PAGE 61

)LJXUH &XPXODWLYH IUHTXHQF\ RI 1 FRQFHQWUDWLRQV LQ K\GULOOD WLVVXHV 6HSW WKURXJK 2FW f 7KH GDVKHG OLQH PDUNV WKH FULWLFDO OHYHO RI 1 IRU ZDWHUZHHG *HUORII f

PAGE 62

1 &21&(175$7,21 ,1 +<'5,//$ 7,668( b GU\ ZWf /$.( 2.$+803.$ UR 0 FP 08/$7,9( )5(48(1&< bf 7 R /$.( /2&+/226$ /$.( )$,59,(: /$.( 67(//$ /$.( .(55 &r 2 P R R r &r R R

PAGE 63

)LJXUH &XPXODWLYH IUHTXHQF\ RI 3 FRQFHQWUDWLRQV LQ K\GULOOD WLVVXHV 6HSW WKURXJK 2FW f 7KH GDVKHG OLQH PDUNV WKH FULWLFDO OHYHO RI 3 IRU ZDWHUZHHG *HUORII f

PAGE 64

/$.( 2.$+803.$ /$.( /2&+/226$ /$.( )$,59,(: /$.( 67(//$ /$.( .(55 3 &21&(175$7,21 ,1 +<'5,//$ 7,668( PJJf 7 r 7 Q 7 8 UU 2 &808/$7,9( )5(48(1&< bf /

PAGE 65

)LJXUH &XPXODWLYH IUHTXHQF\ RI FRQFHQWUDWLRQV LQ K\GULOOD WLVVXH 6HSW WKURXJK 2FW f 7KH GDVKHG OLQH PDUNV WKH FULWLFDO OHYHO RI IRU ZDWHUZHHG *HUORII f

PAGE 66

. &21&(175$7,21 ,1 +<'5,//$ 7,668( /$.( 2.$+803.$ /$.( /2&+/226$ /$.( )$,59,(: /$.( 67(//$ /$.( .(55 Q L L L L !} Lf§/ R 7 R , , , , , , , b GU\ ZWf UR RW FrDf &808/$7,9( )5(48(1&< bf mM X! R /$ 2 2 R R -

PAGE 67

)LJXUH &XPXODWLYH IUHTXHQF\ RI &D FRQFHQWUDWLRQV LQ K\GULOOD WLVVXHV 6HSW WKURXJK 2FW f 7KH GDVKHG OLQH PDUNV WKH FULWLFDO OHYHO RI IRU ZDWHUZHHG *HUORII f

PAGE 68

&D &21&(175$7,21 ,1 +<'5,//$ 7,668( PRIOf m2r /$.( 7 n f L &808/$7,9( )5(48(1&< bf U} A 2 OLOL 2.$+803.$ 0 6 6 /$.( 2 } R /2&+/226$ } R /$.( ,Q 2 8 2 ,,, U )$,59,(: fO f§ f R R 2 : /$.( ,,, f§ 67(//$ U9f§L r R R /$.( .(55 W f 2 f§ : f R 2 R

PAGE 69

)LJXUH &XPXODWLYH IUHTXHQF\ RI 0J FRQFHQWUDWLRQV LQ K\GULOOD WLVVXHV 6HSW WKURXJK 2FW f 7KH GDVKHG OLQH PDUNV WKH FULWLFDO OHYHO RI 0J IRU ZDWHUZHHG *HUORII f

PAGE 70

/$.( 2.$+803.$ /$.( /2&+/226$ /$.( )$,59,(: /$.( 67(//$ /$.( .(55 0J &21&(175$7,21 ,1 +<'5,//$ 7,668( PJJf R aU &808/$7,9( )5(48(1&< b! / / B }R R RR Mf§J 77 ]V

PAGE 71

)LJXUH &XPXODWLYH IUHTXHQF\ RI )H FRQFHQWUDWLRQV LQ K\GULOOD WLVVXHV 6HSW WKURXJK 2FW f 7KH GDVKHG OLQH PDUNV WKH FULWLFDO OHYHO RI )H IRU ZDWHUZHHG *HUORII f

PAGE 72

)H &21&(175$7,21 ,1 +<'5,//$ 7,668( R PJJf /$.( 2.$+803.$ &808/$7,9( )5(48(1&< bf /$.( /2&+/226$ , UU R /$.( )$,59,(: UR 2 8, &-, 2 /$.( 67(//$ L UDO 2 } R Un96f§ RZ 2 R , /$.( .(55 R R

PAGE 73

)LJXUH &XPXODWLYH IUHTXHQF\ RI &X FRQFHQWUDWLRQV LQ K\GULOOD WLVVXHV 6HSW WKURXJK 2FW %'/ EHORZ GHWHFWDEOH OLPLWVf

PAGE 74

/$.( 2.$+803.$ &X &21&(175$7,21 ,1 +<'5,//$ 7,668( PJNJf f§ UR Z A P R R R R R U &808/$7,9( )5(48(1&< bf R R /$.( /2&+/226$ &' 2 UR !M /$ ,7 ,$ 8! 2 2 /$.( )$,59,(: $ / /$.( 67(//$ /$.( .(55 M

PAGE 75

/DNH /RFKORRVD ORZ ELRPDVV DQG DSSDUHQW LQDELOLW\ RI K\GULOOD WR SUROLIHUDWH LQ /DNH .HUU FDQQRW EH H[SODLQHG LQ WHUPV RI FRQFHQWUDWLRQV RI 1 LQ K\GULOOD WLVVXH 3ODQW WLVVXH GDWD IRU 3 )LJXUH f SUHVHQW D VLWXDWLRQ YHU\ VLPLODU WR WKDW IRU 1 DOWKRXJK VRPHZKDW OHVV GHILQLWLYH *UHDWHU WKDQ b RI /DNH )DLUYLHZ DQG /DNH 6WHOOD VDPSOHV IDOO EHORZ WKH *HUORII FULWLFDO OHYHOV VXJJHVWLQJ 3 OLPLWDWLRQ LQ WKHVH ODNHV +RZHYHU WKH RYHUODS RI DERXW b RI WKH /DNH 2NDKXPSND VDPSOHV FRPSOLFDWH WKLV UHODWLRQVKLS 7KH VLJQLILFDQW H[SODQDWLRQ RI b RI K\GULOOD ELRPDVV LQ /DNH 6WHOOD RQ 3 FRQFHQWUDWLRQV LQ K\GURVRLO 7DEOH f FRPELQHG ZLWK WKH REVHUYDn WLRQ WKDW WLVVXH FRQFHQWUDWLRQV RI 3 DUH FORVH WR SUREDEOH FULWLFDO OHYHOV SUHVHQW IDLUO\ FRQYLQFLQJ HYLGHQFH IRU 3 OLPLWDWLRQ LQ /DNH 6WHOOD DQG HYLGHQFH IRU VRPH HIIHFW RI WKH VXEVWUDWHV LQ SURYLGLQJ D VRXUFH RI DVVLPLODEOH 3 $V ZLWK 1 3 LV LQ VXIILFLHQW VXSSO\ WR DOORZ IRU KLJK SODQW GHQVLWLHV 6LQFH RQO\ b RI WKH YDULDELOLW\ LQ K\GULOOD ELRPDVV LQ /DNH .HUU FRXOG EH DWWULEXWHG WR 3 FRQFHQWUDWLRQV LQ WKH K\GURVRLOV 7DEOH f QR UHODWLRQVKLSV H[LVWHG EHWZHHQ 3 FRQFHQWUDWLRQ LQ WKH K\GURVRLO DQG SODQW WLVVXHV DQG 3 FRQFHQWUDWLRQV LQ WKH SODQW WLVVXHV DUH ZHOO DERYH DSSDUHQW FULWLFDO OHYHOV 3 FRQFHQWUDWLRQV LQ SODQW WLVVXH FDQQRW EH XVHG WR H[SODLQ WKH ORZ ELRPDVV RI K\GULOOD LQ /DNH .HUU &RQFHQWUDWLRQV RI LQ K\GULOOD WLVVXHV WKDW ZRXOG LQGLFDWH OLPLWDn WLRQ WR K\GULOOD JURZWK ZHUH QRW REVHUYHG )LJXUH f $V ZLWK 1 D VWURQJ UHODWLRQVKLS EHWZHHQ OHYHOV RI LQ WKH ODNH ZDWHU DQG OHYHOV RI LQ K\GULOOD WLVVXH ZHUH HYLGHQW /DNH )DLUYLHZ DQG /DNH 6WHOOD KDG WKH KLJKHVW FRQFHQWUDWLRQV LQ WKH ZDWHU FROXPQ 7DEOH f 7KLV LV LQ FRQWUDVW WR WKH UHJUHVVLRQ DQDO\VLV ZKLFK LQGLFDWHG VRPH GHSHQGHQFH RI K\GULOOD

PAGE 76

7DEOH :DWHU FKHPLVWU\ SDUDPHWHUV PHDVXUHG GXULQJ 6HSWHPEHU DQG 2FWREHU DYHUDJH RI UDQGRP VXUIDFH ZDWHU VDPSOHV %'/ EHORZ GHWHFWDEOH OLPLWVf /DNH 1 PJPf 3 PJPf PJf &D PJf )H PJf 0J PJKLf &X PJPf &KL D PJPf S+ /RFKORRVD 2NDKXPSND )DLUYLHZ %'/ 6WHOOD %'/ .HUU &7f

PAGE 77

ELRPDVV RQ FRQFHQWUDWLRQV LQ WKH VXEVWUDWHV RI /DNH 2NDKXPSND /DNH )DLUYLHZ /DNH /RFKORRVD DQG /DNH 6WHOOD 7DEOH f DQG PD\ VXJJHVW ORVV RI K\GURVRLO GHULYHG &RQFHQWUDWLRQV RI &D LQ K\GULOOD WLVVXH )LJXUH f DPRQJ WKH VWXG\ ODNHV LV GLIILFXOW WR LQWHUSUHW 7KH FRQFHQWUDWLRQV RI &D LQ K\GULOOD WLVVXH ZLWKLQ DOO RI WKH VWXG\ ODNHV RYHUODS WKH FULWLFDO OHYHO IRU ZDWHUZHHG +RZHYHU EHFDXVH WKHUH ZHUH QR LPSRUWDQW HIIHFWV RI K\GURVRLO FRQFHQWUDWLRQV RI &D RQ K\GULOOD ELRPDVV RU FRQFHQWUDWLRQV RI &D LQ K\GULOOD WLVVXHV WKHUH LV QRW D JUHDW GLIIHUHQFH LQ &D OHYHOV RI ODNH ZDWHUV DQG WKH FRQFHQWUDWLRQV RI &D LQ WKH K\GULOOD WLVVXHV ZLWKLQ ODNHV EHWZHHQ WKH WK DQG WK SHUFHQWLOH DUH YHU\ VLPLODU &D GRHV QRW H[HUW DQ LPSRUWDQW HIIHFW RQ SODQW ELRPDVV LQ WKHVH ODNHV (VVHQWLDOO\ DOO RI WKH FRQFHQWUDWLRQV RI 0J LQ K\GULOOD WLVVXH DUH ZHOO DERYH WKH *HUORII FULWLFDO OHYHOV )LJXUH f 7KHVH FRQFHQWUDWLRQV DUH VLPLODU DPRQJ DOO RI WKH ODNHV H[FHSW /DNH .HUU $OO K\GULOOD VDPSOHV IURP /DNH .HUU \LHOGHG 0J FRQFHQWUDWLRQV OHVV WKDQ DERXW b RI WKH VDPSOHV LQ WKH RWKHU ODNHV 7KLV REVHUYDWLRQ PD\ UHODWH WR WKH ORZ ELRPDVV RI K\GULOOD LQ /DNH .HUU &RPSDULVRQ RI )H FRQFHQWUDWLRQV )LJXUH f RI K\GULOOD WLVVXHV DPRQJ WKH ODNHV IROORZV D VLPLODU SDWWHUQ WR WKDW RI 1 7KH OHYHOV RI )H LQ WLVVXHV IURP /DNH 2NDKXPSND /DNH /RFKORRVD DQG /DNH .HUU DUH ZHOO DERYH *HUORIInV FULWLFDO OHYHOV ZKHUHDV DSSUR[LPDWHO\ b RI WKH VDPSOHV IURP /DNH )DLUYLHZ DQG /DNH 6WHOOD DUH EHORZ WKLV OHYHO DQG WKH RWKHU ODNHV +RZHYHU VLQFH WKHVH WLVVXH FRQFHQWUDWLRQV DUH QRW UHODWHG WR K\GURVRLO RU ZDWHU OHYHOV )H OHYHOV LQ WKH K\GULOOD WLVVXHV SUREDEO\ GR QRW HIIHFW K\GULOOD ELRPDVV

PAGE 78

7KH GDWD SURYLGH QR LQGLFDWLRQ RI &X OLPLWDWLRQ VLQFH DOO K\GULOOD WLVVXHV KDG &X FRQFHQWUDWLRQV DV KLJK RU KLJKHU WKDQ WKH WLVVXHV IURP /DNH 2NDKXPSND )LJXUH f &RQFOXVLRQV &RQFHQWUDWLRQV RI 1 3 &D 0J )H DQG &X LQ WKH K\GURVRLO H[SODLQHG RQO\ VPDOO DPRXQWV RI WKH ODUJH YDULDELOLW\ LQ VXEPHUVHG PDFURSK\WH ELRPDVV RI WKH VWXG\ ODNHV DQG OLNHZLVH KDG OLWWOH RU QR SRVLWLYH UHODWLRQVKLS ZLWK QXWULHQW FRQFHQWUDWLRQV RI K\GULOOD WLVVXH 7KLV VXJJHVWV WKDW RWKHU IDFWRUV VXFK DV DYDLODELOLW\ RI QXWULHQWV LQ WKH ZDWHU DUH FRQWUROOLQJ PDFURSK\WH ELRPDVV

PAGE 79

&+$37(5 5(/$7,216+,36 $021* :$7(5 &+(0,675< 75$163$5(1&< &+/2523+
PAGE 80

FRQFHQWUDWLRQV )LW]JHUDOG *RXOGHU :LHEH f 7KLV DQWDJRQLVP KDV EHHQ DWWULEXWHG WR FRPSHWLWLRQ IRU OLJKW VKDGLQJf DQG QXWULHQWV (PERG\ +DVOHU DQG -RQHV 0XOOLJDQ DQG %DUDQRZVNL 1LFKROV 3KLOLSV HW DO f RU DOOHORSDWK\ +RJHWVR HW DO f ,W KDV DOVR EHHQ REVHUYHG WKDW 3 FRQFHQn WUDWLRQV LQ ODNHV KHDYLO\ LQIHVWHG ZLWK VXEPHUVHG PDFURSK\WHV DUH RIWHQ ZHOO EHORZ WKDW H[SHFWHG IRU WKH JHRORJLF UHJLRQ &DQILHOG f 0DULVWR f VKRZHG D GLUHFW UHODWLRQVKLS EHWZHHQ ZDWHU FODULW\ DQG WKH ORZHU OLPLW RI PDFURSK\WHV LQ )LQLVK ODNHV 'HFUHDVHG ZDWHU FODULW\ FDXVHG E\ SK\WRSODQNWRQ VKRXOG WKHUHIRUH GHFUHDVH WKH H[WHQW RI YHUWLFDO GLVWULEXWLRQ LQ ODNHV 'HQVH SK\WRSODQNWRQ VWDQGLQJ FURSV FDQ VXSSUHVV RU HOLPLQDWH VXEPHUVHG PDFURSK\WHV E\ VKDGLQJ DIWHU IHUWLOL]DWLRQ RI SRQGV (PERG\ 0RVV 6PLWK DQG 6ZLQJOH f 7KH SXUSRVH RI WKLV ZRUN ZDV WR VWXG\ WKH UHODWLRQVKLS EHWZHHQ ZDWHU FKHPLVWU\ FKORURSK\OO DA ZDWHU FODULW\ DQG VXEPHUVHG PDFURSK\WH ELRPDVV LQ )ORULGD ODNHV ZKLFK FRYHU D UDQJH RI WURSKLF W\SHV 7KHVH UHODWLRQVKLSV ZRXOG EH XVHG WR SUHGLFW SRWHQWLDO FKDQJHV LQ WKHVH SDUDPHWHUV FDXVHG E\ ODNH PDQDJHPHQW SUDFWLFHV 0DWHULDOV DQG PHWKRGV 6DPSOLQJ RI ODNHV DQG QXWULHQW DQDO\VHV ZHUH FRQGXFWHG DV GHVFULEHG LQ &KDSWHU %DWK\PHWULF PDSV RI DOO VWXG\ ODNHV $SSHQGL[ f H[FHSW /DNH 2NDKXPSND ZHUH FRQVWUXFWHG XVLQJ DHULDO SKRWRJUDSKV 86*6 6DOW /DNH &LW\ 87 RU )ORULGD &LWUXV &HQVXV 2UODQGR )/f DQG IDWKRPHWHU

PAGE 81

% WUDFLQJV /DNH DUHD DQG YROXPHV ZHUH GHWHUPLQHG E\ SRODU SODQLPHWU\ XVLQJ EDWK\PHWULF PDSV DQG K\SVRJUDSKLF FXUYHV /LQG f $SSHQGL[ f 7KH PRUSKRPHWULF PHDVXUHPHQWV RI 6LPPRQGV DQG *HUPDQ f ZHUH XVHG IRU /DNH 2NDKXPSND $UHDO FRYHUDJH RI VXEPHUVHG PDFURSK\WHV ZDV GHWHUPLQHG IRU LQGLYLGXDO ODNHV E\ b& ]9W f ZKHUH b& SHUFHQW FRYHU 9 YHJHWDWHG OHQJWK RI WUDQVHFW 9WPf DQG 7W VXP RI DOO WUDQVHFW OHQJWKV Pf 7RWDO VXEPHUVHG PDFURSK\WH ELRPDVV ZDV GHWHUPLQHG E\ % $f b&f'f ZKHUH % WRWDO VXEPHUVHG PDFURSK\WH ELRPDVV NJ GU\ ZWf $ ODNH VXUIDFH DUHD Pf DQG DYHUDJH VXEPHUVHG PDFURSK\WH GHQVLW\ NJ GU\ ZWPAf DV PHDVXUHG ZLWK ELRPDVV VDPSOHU 3RWHQWLDO ODNHZDWHU QXWULHQW FRQFHQWUDWLRQV ZHUH FDOFXODWHG E\ :F >%f3&ff9@0F ZKHUH :F SRWHQWLDO FRQFHQWUDWLRQ RI QXWULHQW F LQ ODNH ZDWHU PJPf % PJf 3F FRQFHQWUDWLRQ RI QXWULHQW F LQ SODQW WLVVXH DYHUDJHG RYHU VSHFLHV 9 ODNH YROXPH Pf DQG 0H PHDVXUHG FRQFHQWUDWLRQV RI QXWULHQW F LQ ODNH ZDWHU &RORU ZDV GHWHUPLQHG E\ WKH SODWLQXP FREDOW PHWKRG DQG PDWFKHG 1HVVOHU WXEHV $PHULFDQ 3XEOLF +HDOWK 6HUYLFH f DIWHU ILOWHULQJ WKURXJK D *HO PDQ W\SH $( JODVV ILEHU ILOWHU 7UDQVSDUHQF\ ZDV PHDVXUHG ZLWK D /L&RU 0RGHO $ TXDQWXP PHWHU ILWWHG ZLWK D /,% XQGHUZDWHU TXDQWXP VHQVRU DQG ZLWK D FP EODFN DQG ZKLWH 6HFFKL GLVF

PAGE 82

5HVXOWV DQG 'LVFXVVLRQ 6XEPHUVHG PDFURSK\WH FRYHUDJH RI WKH VWXG\ ODNHV UDQJHG IURP b LQ /DNH .HUU WR b LQ /DNH 2NDKXPSND 7DEOH f :LWK UHVSHFW WR YHUWLFDO GLVWULEXWLRQ WKH PD[LPXP GHSWK WR ZKLFK YHJHWDn WLRQ RFFXUV LQ ODNHV VHHPV WR EH JRYHUQHG E\ WUDQVSDUHQF\ ,Q DOO ODNHV H[FHSW /DNH 'RZQ K\GULOOD LV WKH GRPLQDQW VXEPHUVHG PDFURSK\WH DQG RFFXUUHG LQ WKH GHHSHVW YHJHWDWHG SDUWV RI WKH ODNH 7KH ORZHU OLPLW RI YHJHWDWLRQ LQ WKH ODNHV LV FORVH WR WKH GHSWK ZKHUH WKH OLJKW FRPSHQVDWLRQ RI K\GULOOD RFFXUV RU FD b IXOO VXQOLJKW 9DQ HW DO f 7DEOH f 7KLV LV KRZHYHU ZLWKLQ PRUSKRPHWULF FRQVWUDLQWV 7KH PD[LPXP GHSWK RI /DNH 2NDKXPSND LV OHVV WKDQ WKH GHSWK DW ZKLFK b OLJKW WUDQVPLWWDQFH RFFXUV KHQFH OLJKW OLPLWDWLRQ GRHV QRW RFFXU DQG /DNH 2NDKXPSND KDV D WRWDO DUHDO FRYHUDJH RI VXEPHUVHG PDFURSK\WHV 7KH PLQLPXP GHSWKV DW ZKLFK b WUDQVPLWWDQFH RFFXUV LQ /DNH /RFKORRVD DQG /DNH )DLUYLHZ ZHUH REVHUYHG GXULQJ WKH ZLQWHU DQG WKHVH DJUHH ZHOO ZLWK WKH PD[LPXP YHJHWDWLRQ GHSWKV REVHUYHG GXULQJ ERWK IDOO DQG ZLQWHU ,W ZRXOG DSSHDU WKDW WKH KLJKHU WUDQVSDUHQFLHV DV ZHUH PHDVXUHG LQ WKH IDOO GR QRW RFFXU IUHTXHQW HQRXJK WR DOORZ IRU FRORQL]DWLRQ RU WKDW IXUWKHU FRORQL]DWLRQ FDQ EH H[SHFWHG LQ WKHVH ODNHV 7KH S(PA[V FRPSHQVDWLRQ SRLQW ZDV PHDVXUHG XQGHU ODERUDWRU\ FRQGLWLRQV 9DQ HW DO f DQG PD\ GLIIHU XQGHU QDWXUDO FRQGLWLRQV ,Q /DNH 6WHOOD DQG /DNH -DFNVRQ b WUDQVPLWWDQFH RFFXUV DW D FRQVLGHUDEO\ JUHDWHU GHSWK WKDQ WKH PD[LPXP YHJHWDWLRQ GHSWK KRZHYHU VLQFH JUHDWHU GHSWKV RFFXU EHQHDWK OHVV WKDQ b RI WKH ODNH VXUIDFHV $SSHQGL[ f OLJKW OLPLWDWLRQ GRHV QRW RFFXU LQ WKHVH ODNHV 7KH ZDWHU OHYHO RI /DNH 'RZQ ZDV ORZ DW WKH WLPH RI VDPSOLQJ 7KH PD[LPXP YHJHWDWLRQ GHSWK KRZHYHU LV FORVH WR WKH GHSWK RI b WUDQVPLWWDQFH GXULQJ QRUPDO ZDWHU OHYHO FRQGLWLRQV DQG UHIOHFWV WKH UHODWLRQVKLS

PAGE 83

7DEOH 0HDVXUHPHQWV XVHG WR HVWLPDWH WRWDO VXPEHUVHG PDFURSK\WH ELRPDVV LQ VWXG\ ODNHV DQG UHVXOWLQJ ELRPDVV HVWLPDWHV 6XUIDFH /DNH 9ROXPH 9HJHWDWLRQ 0DFURSK\WH 6XEPHUVHG 0DFURSK\WH %LRPDVV PW GU\ ZWf /DNH $UHD KDf P ; f&rYHUAJUQA$YHUDJH /RZHU b &/0 8SSHU b &/0 -DQXDU\ )HEUXDU\ 2NDKXPSND /RFKORRVD )DLUYLHZ 6WHOOD -DFNVRQ .HUU 6HSWHPEHU 2FWREHU 8NDKXPSND /RFKORRVD )DLUYLHZ 6WHOOD 'RZQ .HUU f

PAGE 84

7DEOH &RPSDULVRQ RI WKH PDFURSK\WHV DYDLODELOLW\ RI OLJKW LQ )ORULGD ODNHV WR WKH RFFXUUHQFH RI VXEPHUVHG 'HSWK Pf DW $UHD >b RI WRWDOf 0D[LPXP YHJHWDWLRQ b WUDQVPLWWDQFH DW /DNH b WUDQVPLWWDQFH UHFHLYLQJ b GHSWK Pf PD[LPXP YHJHWDWLRQ WUDQVPLWWDQFH GHSWK -DQXDU\ )HEUXDU\ 2NDKXPSND /RFKORRVD )DLUYLHZ 6WHOOD -DFNVRQ .HUU 6HSWHPEHU 2FWREHU f 2NDKXPSND /RFKORRVD )D LUYLHZ 6WHOOD 'RZQ .HUU

PAGE 85

n EHWZHHQ WKH ORZHU OLPLW RI YHJHWDWLRQ LQ WKH ODNH DQG OLJKW SHQHWUDWLRQ :KHQ WKH REVHUYHG YHJHWDWLRQ FRYHU LQ 7DEOH LV FRPSDUHG WR WKH DUHD ZKHUH VXIILFLHQW OLJKW LV DYDLODEOH IRU SODQW JURZWK 7DEOH f DJUHHPHQW EHWZHHQ PLQLPXP RU PD[LPXP YDOXHV PHDVXUHG LQ ZLQWHU RU IDOO IRU /DNHV 2NDKXPSND /RFKORRVD )DLUYLHZ DQG 6WHOOD LV REVHUYHG 7KLV VXJJHVWV WKDW OLJKW SHQHWUDWLRQ LV WKH PDMRU IDFWRU LQIOXHQFLQJ DUHDO VXEPHUVHG PDFURSK\WH FRYHU LQ WKHVH ODNHV ,Q /DNHV -DFNVRQ DQG 'RZQ WKH UHPDLQLQJ XQYHJHWDWHG DUHD FDQ EH DFFRXQWHG IRU E\ VKDOORZ DUHDV ZKLFK DUH LQWHUPLWWHQWO\ ZHW DQG GU\ DQG ZKLFK DUH FKDUDFWHUL]HG E\ FRDUVH XQVWDEOH VXEVWUDWHV 7KH ODUJH DUHD RI /DNH .HUU ERWWRP ZKLFK LV XQYHJHWDWHG FDQQRW EH H[SODLQHG E\ OLJKW SHQHWUDWLRQ RU VXEVWUDWHV /DNH 2NDKXPSND /DNH /RFKORRVD DQG /DNH )DLUYLHZ DUH VLWXDWHG LQ JHRORJLF UHJLRQV ZKLFK DUH FKDUDFWHUL]HG E\ ODNHV LQ WKH PHVRWURSKLF WR HXWURSKLF FODVVLILFDWLRQ &DQILHOG f /DNH 2NDKXPSND DQG /DNH )DLUYLHZ KRZHYHU KDG KLJK WUDQVSDUHQF\ 7DEOH f ORZ FKORURSK\OO DA FRQFHQWUDWLRQV 7DEOH f DQG 3 FRQFHQWUDWLRQV DW RU QHDU WKH ROLJRPHVRWURSKLF UDQJH LQ WKH IDOO ZKHQ PDFURSK\WH ELRPDVV LV PD[LPDO 7KHVH ODNHV DOVR ZHUH VXSSRUWLQJ D GHQVH VXEPHUVHG PDFURSK\WH FRPPXQLW\ 7DEOH f /DNH /RFKORRVD RQ WKH RWKHU KDQG KDG D PRGHUDWH GHQVLW\ RI VXEPHUVHG PDFURSK\WHV DQG FRQFXUUHQWO\ KLJK FRQFHQWUDWLRQV RI ERWK FKORURSK\OO DB DQG 3 /DNH 6WHOOD LV ORFDWHG LQ D JHRORJLF UHJLRQ FKDUDFWHUL]HG E\ PHVRROLJRWURSKLF FRQGLWLRQV ,W VXSSRUWV PRGHUDWH OHYHOV RI VXEPHUVHG PDFURSK\WHV DQG KDV 3 DQG FKORURSK\OO e FRQFHQWUDn WLRQV LQGLFDWLYH RI ROLJRWURSK\ /DNH 'RZQ DQG /DNH .HUU OLH LQ JHRORJLF UHJLRQV W\SLILHG E\ ROLJRWURSKLF ODNHV 7KHVH ODNHV GR H[KLELW ROLJRWURSKLF FRQGLWLRQV DQG VXSSRUW RQO\ ORZ PDFURSK\WH ELRPDVV

PAGE 86

7DEOH &KORURSK\OO DA DQG 6HFFKL WUDQVSDUHQF\ WKDW ZDV PHDVXUHG SUHGLFWHG IURP REVHUYHG 1 DQG 3 RU SUHGLFWHG IURP SRWHQWLDOO\ DYDLODEOH 1 DQG 3 RI VXEPHUVHG PDFURSK\WHV HTXDWLRQV RI &DQILHOG DQG &DQILHOG DQG +RGJVRQ f /DNH &RORU PJ 3Wf &KL D PJf 6HFFKL WUDQVSDUHQF\ Pf 2EVHUYHG 3UHGLFWHG IURP 2EVHUYHG 13 3UHGLFWHG IURP 3RWHQWLDO 13 2EVHUYHG 3UHGLFWHG IURP 2EVHUYHG 1) 3UHGLFWHG IURP f 3RWHQWLDO 13 -DQXDU\ )HEUXDU\ 2NDKXPSND %f /RFKORRVD )DLUYLHZ 6WHOOD -DFNVRQ .HUU 6HSWHPEHU 2FWREHU 2NDKXPSND %f /RFKORRVD )DLUYLHZ 6WHOOD %f -DFNVRQ .HUU % %RWWRP

PAGE 87

+\GULOOD ZKLFK XVXDOO\ FDXVHV D VHYHUH ZHHG SUREOHP ZKHQ LW LV LQWURGXFHG LQWR D ODNH KDV EHHQ SUHVHQW LQ /DNH .HUU IRU VHYHUDO \HDUV EXW KDV QRW SUROLIHUDWHG +\GULOOD UHSRUWHGO\ KDV EHHQ IRXQG LQ /DNH 'RZQ 1LFN 6DVVLF SHUVRQDO FRPPXQLFDWLRQf EXW GLG QRW EHFRPH HVWDEOLVKHG 1RWH DOVR WKDW WKH ZLQWHU VDPSOLQJ ZKHQ PDFURSK\WHV DUH DW ORZHU GHQVLWLHV WKDW DOO ODNHV H[FHSW /RFKORRVD \LHOGHG KLJKHU 1 RU 3 FRQFHQWUDWLRQV WKDQ LQ IDOO :KHUH KLJK QXWULHQW FRQGLWLRQV DUH H[SHFWHG KLJK PDFURSK\WH GHQVLWLHV DUH REVHUYHG LQ IDOO EXW 3 FRQFHQWUDWLRQ LQ WKH ZDWHU LV ORZHU WKDQ H[SHFWHG 7KH GDWD VXJJHVW WKDW WKLV GHSUHVVLRQ LQ H[SHFWHG 3 FRQFHQWUDWLRQ UHVXOWV IURP DVVLPLODWLRQ LQWR PDFURSK\WH ELRPDVV ,Q ODNHV OLNH /RFKORRVD KRZHYHU 3 FRQFHQWUDWLRQV H[FHHG WKH PDFURSK\WH SRSXODWLRQV DVVLPLODWRU\ FDSDFLW\ ZKLFK DOORZV IRU FRQFXUUHQW KLJK SK\WRSODQNWRQ SRSXODWLRQV 7KHVH REVHUYDWLRQV VXSSRUW WKH YLHZV RI *RXOGHU f ZKR VXJJHVWHG WKDW WKH DSSDUHQW DQWDJRQLVP EHWZHHQ PDFURSK\WHV DQG SK\WRSODQNWRQ ZDV D UHVXOW RI FRPSHWLWLRQ IRU QXWULHQWV ZKHUH WKH PDFURSKW\HV DFW DV QXWULHQW VLQN *RXOGHU f VXJJHVWHG WKDW PDFURSK\WHV ZHUH DQ LPSRUWDQW 1 VLQN 7KH GDWD IURP WKLV VWXG\ VXJJHVW WKDW 3 LV VHQVLWLYH WR PDFURSK\WH ELRPDVV DQG WKDW DVVLPLODWLRQ RI WKLV QXWULHQW E\ WKH VXEPHUVHG PDFURSK\WH FRPPXQLW\ OLPLWV SK\WRSODQNWRQ SURGXFWLRQ ,W LV GLIILFXOW WR DVVLJQ D VLQJOH IDFWRU DV HIIHFWLQJ PDFURSK\WH ELRPDVV EHFDXVH VHYHUDO ZDWHU FKHPLVWU\ SDUDPHWHUV DUH UHODWHG 6WXG\ ODNHV ZLWK ORZ ELRPDVV KDYH ORZ DONDOLQLW\ ORZ S+ DQG WKH GRPLQDQW DQLRQ LV VXOIDWH 7DEOH f )XUWKHU LQYHVWLJDWLRQ ZLOO EH QHHGHG WR VHSDUDWH WKHVH IDFWRUV 7KH SUHFHGLQJ GLVFXVVLRQ VXJJHVWV WKDW 3 LV WKH OLPLWLQJ IDFWRU WR VXEPHUVHG PDFURSK\WH ELRPDVV LQ WKHVH ODNHV $QG FRPELQHG ZLWK WKH GDWD RI &KDSWHU WKDW WKH ZDWHU FROXPQ

PAGE 88

7DEOH :DWHU FKHPLVWU\ GDWD RI VWXG\ ODNHV 'DWD IURP &DQILHOG f /DNH 7RWDO DONDOLQLW\ PJ DV &D&f 6SHFLILF FRQGXFWDQFH \PKRVFP &f +& bf FR r! 6a b` &O bf 3+ 2NDKXPSND /RFKORRVD )DLUYLHZ 6WHOOD -DFNVRQ 'RZQ .HUU

PAGE 89

LV WKH PDMRU VRXUFH RI 3 QXWULWLRQ 6RPH RI WKH HFRORJLFDO FKDQJHV LQ WKH GLIIHUHQW ODNHV LQ UHVSRQVH WR UHOHDVLQJ WKH QXWULHQW SRRO UHSUHVHQWHG E\ WKH PDFURSK\WH ELRPDVV EDFN WR WKH ZDWHU FDQ EH SUHGLFWHG 7KH SRWHQWLDO QXWULHQW FRQFHQn WUDWLRQV LQ 7DEOH DUH FDOFXODWHG IURP WKH DYHUDJH ELRPDVV HVWLPDWHV DQG ODNHV YROXPHV LQ 7DEOH WKH DYHUDJH SODQW QXWULHQW FRQFHQWUDWLRQ LQ 7DEOH DQG WKH REVHUYHG QXWULHQW FRQFHQWUDWLRQV LQ 7DEOH 8VLQJ WKH SRWHQWLDO FRQFHQWUDWLRQV RI1DQG 3 DQG WKH HTXDWLRQV RI &DQILHOG f DQG &DQILHOG DQG +RGJVRQ f WKH SRWHQWLDO FKORURSK\OO DB FRQFHQWUDWLRQV DQG 6HFFKL WUDQVSDUHQFLHV FDQ EH SUHGLFWHG DQG FRPSDUHG WR WKH REVHUYHG YDOXHV ZKHQ WKH PDFURSK\WHV ZHUH SUHVHQW 7KH HTXDWLRQV WHQG WR RYHUHVWLPDWH FKORURSK\OO D WKHUHIRUH WKH SUHGLFWHG 6HFFKL WUDQVSDUHQF\ DQG FKORURSK\OO DA FRQFHQWUDWLRQV EDVHG RQ SUHGLFWLRQV IURP REVHUYHG 1 DQG 3 DUH LQFOXGHG DORQJ ZLWK WKH REVHUYHG YDOXHV $GGLWLRQ RI WKH SRWHQWLDO QXWULHQW SRRO DVVLPLODWHG LQ WKH PDFURSK\WH ELRPDVV LQ IDOO ZLOO KDYH D GUDPDWLF LPSDFW XSRQ WKH FKORURSK\OO DA DQG WUDQVSDUHQF\ RI VRPH ODNHV EXW QRW RWKHUV 7DEOH f :KLOH WKH SRWHQWLDO SK\WRSODQNWRQ EORRP DQG UHVXOWLQJ UHGXFWLRQ LQ WUDQVSDUHQF\ LQ /DNH 2NDKXPSND /DNH /RFKORRVD DQG /DNH )DLUYLHZ ZRXOG EH VXIILFLHQW WR HOLPLQDWH RU VHYHUHO\ VXSSUHVV PDFURSK\WH UHFRORQL]Dn WLRQ /DNH 'RZQ ZRXOG EH OLWWOH HIIHFWHG DQG /DNH .HUU YLUWXDOO\ XQHIIHFWHG 7KH HIIHFWV RQ /DNH 6WHOOD ZLWK UHVSHFW WR EDVLQ PRUSKRPHWU\ ZRXOG QRW EH VXIILFLHQW WR VXSSUHVV PDFURSK\WH UHJURZWK WR D ODUJH H[WHQW 7KH SUHGLFWHG HIIHFWV IRU WKH ZLQWHU VDPSOLQJ DUH QRW DV VHYHUH EHFDXVH RI ORZHU ELRPDVV HVWLPDWHV $OWKRXJK VXEPHUVHG PDFURSK\WH ELRPDVV LV SUREDEO\ ORZHU LQ ZLQWHU YDOXHV IRU WKH WZR

PAGE 90

7DEOH 0HDVXUHG FRQFHQWUDWLRQV RI SODQW QXWULHQWV LQ ODNH ZDWHU DYHUDJH RI VXEVXUIDFH VDPSOHV %'/ EHORZ GHWHFWDEOH OLPLWVf /DNH 1 PJPf 3 PJPf PJf &D PJf 0J PJf )H PJf -DQXDU\ )HEUXDU\ 2NDKXPSND /RFKORRVD )DLUYLHZ %'/ 6WHOOD %'/ -DFNVRQ %'/ .HUU %'/ 6HSWHPEHU 2FWREHU 2NDKXPSND /RFKORRVD )DLUYLHZ 6WHOOD 'RZQ f %'/ .HUU

PAGE 91

7DEOH $YHUDJH SRWHQWLDO FRQFHQWUDWLRQV RI SODQW QXWULHQWV LQ ODNH ZDWHU VXP RI REVHUYHG YDOXHV DQG DGGLWLRQV IURP VXEPHUVHG PDFURSK\WHV DVVXPLQJ b UHOHDVHf /DNH 1 PJPf PJPf PJf &D PJf 0J PJf )H PJf -DQXDU\ )HEUXDU\ 2NDKXPSND /RFKORRVD )DLUYLHZ 6WHOOD -DFNVRQ .HUU 6HSWHPEHU 2FWREHU 2NDKXPSND /RFKORRVD )DLUYLHZ 6WHOOD 'RZQ .HUU

PAGE 92

7DEOH $YHUDJH QXWULHQW FRQFHQWUDWLRQV RI VXEPHUVHG PDFURSK\WHV b GU\ ZW QXPEHUV LQ SDUHQWKHVHV DUH VWDQGDUG HUURUV RI WKH PHDQf /DNH 1 3 &D 0J )H -DQXDU\ )HEUXDU\ 2NDKXPSND f f f f f f /RFKORRVD f f f f f f )DLUYLHZ f f f f f f 6WHOOD f f f f f f -DFNVRQ f f f f f f .HUU f f f f f f 6HSWHPEHU 2FWREHU 2NDKXPSND f f f f f f /RFKORRVD f f f f f f )DLUYLHZ f f f f f f 6WHO D f f f f f f 'RZQ f f f f f f .HUU f f f f f f

PAGE 93

VDPSOLQJ SHULRGV DUH QRW GLUHFWO\ FRPSDUDEOH EHFDXVH WKH LPSURYHG VDPSOLQJ KHDG ZDV XVHG IRU WKH IDOO VDPSOLQJ ZKLFK UHSRUWHGO\ \LHOGV ELRPDVV HVWLPDWHV WR WLPHV KLJKHU %UXFH 6DERO SHUVRQDO FRPPXQLFDWLRQf 7KLV FRUUHFWLRQ IDFWRU ZRXOG PDNH WKH YDOXHV EHWZHHQ WKH VDPSOLQJ SHULRGV FRPSDUDEOH 3UHGLFWLRQV VXFK DV WKHVH ZLOO EH LQIOXHQFHG E\ KXGUDXOLF IOXVKLQJ DQG ORDGLQJ UDWHV KRZHYHU WKH SUHGLFWLRQV IRU WKH ODNHV LQ WKLV VWXG\ DUH LQ DJUHHPHQW ZLWK H[SHFWHG QXWULHQW FRQFHQWUDWLRQV IRU WKH JHRORJLF UHJLRQV LQ ZKLFK WKH ODNHV DUH VLWXDWHG &DQILHOG f &RQFOXVLRQV 7KH YHUWLFDO GLVWULEXWLRQ RI PDFURSK\WHV LQ DOO EXW RQH RI WKH ODNHV VWXGLHG FRXOG EH DWWULEXWHG WR ZDWHU WUDQVSDUHQF\ 7UDQVSDUHQF\ LV GLUHFWO\ HIIHFWHG E\ WKH LQWHUDFWLRQ EHWZHHQ WKH VXEPHUVHG PDFURSK\WH FRPPXQLW\ SK\WRSODQNWRQ DQG 3 DYDLODELOLW\ LQ WKH ZDWHU 0DFURSK\WHV VXSSUHVV SK\WRSODQNWRQ SRSXODWLRQV E\ DFWLQJ DV D 3 VLQN ZKLOH WKH UHGXFWLRQ LQ ZDWHU WUDQVSDUHQF\ FDXVHG E\ KLJK SK\WRSODQNWRQ GHQVLW\ VXSSUHVV WKH VXEPHUVHG PDFURSK\WH FRPPXQLW\ :KHQ QHW 3 ORDGLQJ H[FHHGV WKH DVVLPLODWRU\ UDWH RI WKH PDFURSK\WH FRPPXQLW\ SK\WRSODQNWRQ GRPLQDQFH PD\ RFFXU 8VLQJ HVWLPDWHV RI WKH WRWDO 1 DQG 3 UHSUHVHQWHG E\ WKH PDFURSK\WH FRPPXQLW\ ZH FDQ SUHGLFW ZKDW WKH HIIHFWV RI UHOHDVLQJ WKHVH QXWULHQWV ZLOO EH RQ SK\WRSODQNWRQ DQG ZDWHU WUDQVSDUHQF\

PAGE 94

&+$37(5 6800$5< $1' &21&/86,21 7KHUH LV VWURQJ HYLGHQFH WKDW WKH URRWV RI VXEPHUVHG PDFURSK\WHV FDQ DEVRUE QXWULHQWV IURP WKH URRWLQJ PHGLXP DQG WKDW WKH SODQWV FDQ VXEVHTXHQWO\ WUDQVORFDWH WKHVH QXWULHQWV DFURSHWDOO\ $V GLVFXVVHG LQ &KDSWHU WKLV KDV EHHQ REVHUYHG LQ ODERUDWRU\ H[SHULPHQWV DQG LQ ODNHH[FORVXUHV ZKHQ WKH URRW HQYLURQPHQW LV VXSSOLHG ZLWK DQ DYDLODEOH IRUP RI D QXWULHQW )RU WKH SXUSRVH RI LVRODWLQJ DQG VWXG\LQJ D VSHFLILF SKHQRPHQRQ PDQ\ QDWXUDOO\ RFFXUULQJ HQYLURQPHQWDO SUHVVXUHV DUH UHPRYHG IURP WKH H[SHULPHQWDO HQYLURQPHQW DQG XQQDWXUDO FRQVWUDLQWV DUH SODFHG XSRQ SODQW JURZWK 6SHFLILF TXHVWLRQV UHODWLQJ WR SODQW IXQFWLRQV DUH DQVZHUHG LQ WKLV PDQQHU EXW WKH FRQFOXVLRQV DUH QRW QHFHVVDULO\ GLUHFWO\ DSSOLFDEOH WR WKH LQWHUDFWLRQV RI SODQWV ZLWK WKHLU QDWXUDO VXUURXQGLQJV 6XEPHUVHG PDFURSK\WH DEXQGDQFH DQG QXWULHQW FRQWHQW ZDV LQWHQVLYHO\ VWXGLHG ZLWK UHVSHFW WR FRQFHQWUDWLRQV RI 1 3 &D 0J )H DQG &X FRQFHQWUDWLRQV LQ WKH K\GURVRLO RI VHYHQ )ORULGD ODNHV 7KH GDWD VXJJHVWHG LQ VRPH LQVWDQFHV WKDW 3 DQG LQ WKH K\GURVRLO KDYH D VPDOO LQIOXHQFH RQ ELRPDVV EXW WKH UHVSRQVH ZDV LQFRQVLVWHQW DPRQJ WKH ODNHV +\GURVRLO GHULYHG QXWULWLRQ LV QRW HFRORJLFDOO\ LPSRUWDQW LQ D ODNH VDPSOH ZKLFK VSDQV FRPPRQO\ HQFRXQWHUHG OLPQRORJLFDO FRQGLWLRQV LQ )ORULGD ODNHV 7KH UHODWLRQVKLSV DPRQJ PDFURSK\WH DEXQGDQFH DQG GLVWULEXWLRQ ZDWHU FKHPLVWU\ DQG SK\WRSODQNWRQ DUH GLVFXVVHG LQ &KDSWHU 7KH YHUWLFDO GLVWULEXWLRQ RI VXEPHUVHG PDFURSK\WHV LV GLUHFWO\ LQIOXHQFHG

PAGE 95

E\ ZDWHU WUDQVSDUHQF\ DQG EDVLQ PRUSKRPHWU\ 6XEPHUVHG PDFURSK\WHV DUH DEVHQW ZKHUH ZDWHU GHSWKV SUHYHQW VXIILFLHQW OLJKW IRU SODQW JURZWK IURP UHDFKLQJ WKH ODNH ERWWRP 7KLV GHSWK RFFXUUHG ZKHUH b WR b RI IXOO VXQOLJKW 3$5f ZDV WUDQVPLWWHG +RZHYHU ZDWHU WUDQVn SDUHQF\ LV HSKHPHUDO LQ QDWXUH DQG LV JUHDWO\ HIIHFWHG E\ ZDWHU FKHPLVWU\ VXEPHUVHG PDFURSK\WHV DQG SK\WRSODQNWRQ 6XEPHUVHG PDFURSK\WH ELRPDVV LV GLUHFWO\ UHODWHG WR ODNH WURSKLF VWDWH +RZHYHU ZKHUH KLJK PDFURSK\WH GHQVLW\ RFFXUV 3 DQG FKORURSK\OO DA FRQFHQWUDWLRQV DUH ORZHU WKDQ HXWURSKLF FRQGLWLRQV +LJK PDFURSK\WH ELRPDVV VXSSUHVVHV SK\WRSODQNWRQ SURGXFWLRQ E\ DFWLQJ DV D 3 VLQN DQG UHVXOWV LQ LQFUHDVHG ZDWHU WUDQVSDUHQF\ :KHQ 3 ORDGLQJ H[FHHGV WKH DVVLPLODWRU\ UDWH RI WKH PDFURSK\WH FRPPXQLW\ KLJK SK\WRSODQNWRQ GHQVLW\ FDQ RFFXU DQG SUHYHQW IXUWKHU PDFURSK\WH SURGXFWLRQ E\ VKDGLQJ 8VLQJ PHDVXUHPHQWV RI PDFURSK\WH ELRPDVV DQG QXWULHQW FRQWHQW FKDQJHV LQ ZDWHU FRQGLWLRQV DIWHU UHOHDVH RI WKLV QXWULHQW SRRO FDQ EH SUHGLFWHG

PAGE 96

$33(1',; /2&$7,216 2) %,20$66 $1' +<'5262,/ 6$03/(6 $/21* 75$16(&76 ,1 678'< /$.(6 '85,1* 7:2 6$03/,1* 3(5,2'6 180%(56 &255(6321' 72 %82< 180%(56 ,1 $33(1',; DQG $33(1',;

PAGE 98

6(37

PAGE 99

P /$.( /&+/6$ )(%

PAGE 100

P /$.( /&+/6$ 6(37

PAGE 101

-$1

PAGE 102

P /$.( )$,59,(: 6(37

PAGE 103

P

PAGE 104

P /$.( 67(//$ 6(37

PAGE 105

)(%

PAGE 106

/$.( '2:1 2&7

PAGE 107

&' \} 2 -$1

PAGE 108

/$.( .(55 6(37

PAGE 109

$33(1',; &21&(175$7,216 2) 1875,(176 ; '5< 87r ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f $1' %,20$66 '5< 8764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( 6(37(0%(5 2&72%(5 /$.( /$.( '2:1 %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, /,1*%<$ 63 $ 0$<$&$ $8%/(7,, $7 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,, 0$<$&$ $8%/(7,,

PAGE 110

$33(1',; &21&(175$7,216 2) 1875,(176 b '5< 87 ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f $1' %,20$66 '5< :764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( 6(37(0%(5 2&72%(5 /$.( /$.( )$,59,(: %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 +<'5,//$ 9(57,&,//$7$ 1$-$6 48$'$/83(16,6 1,7(//$ 63 D D 327$02*(721 ,//,12(16,6 6$*,77$5,$ 68%8/$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 6$*,77$5,$ 68%8/$7$ +<'5,//$ 9(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 6$*,77$5,$ 68%8/$7$ D +<'5,//$ 9(57,&,//$7$ D 1$-$6 48$'$/83(16,6 D 1,7(//$ 63 r RDL D 327$02*(721 ,//,12(16,6 D 6$*,77$5,$ 68%8/$7$ +<'5,//$ 9(57,&,//$7$ OL +<'5,//$ 9(57,&,//$7$ X 1,7(//$ 63 OL 327$02*(721 ,//,12(16,6 +<'5,//$ 9(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 6$*,77$5,$ 68%8/$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ 327$02*(721 ,//,12(16,6 • &(5$723+
PAGE 111

$33(1',; &21&(175$7,216 2) 1875,(176 '5< 87 ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f $1' %,20$66 '5< 8764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( 6(37(0%(5 2&72%(5 /$.( /$.( )$,58,(8 %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 +<'5,//$ 8(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 +<'5,//$ 8(57,&,//$7$ 1$-$6 48$'$/83(16,6 1,7(//$ 63 327$02*(721 ,//,12(16,6 +<'5,//$ 8(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 +<'5,//$ 8(57,&,//$7$ 327$02*(721 ,//,12(16,6 n +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ 327$02*(721 ,//,12(16,6 +<'5,//$ 8(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 1,7(//$ 63 +<'5,//$ 8(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 1,7(//$ 63 327$02*(721 ,//,12(16,6 +<'5,//$ 8(57,&,//$7$ 177(//$ 63 327$02*(721 ,//,12(16,6 +<'5,//$ 8(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 +<'5,//$ 8(57,&,//$7$ 327$02*(721 ,//,12(16,6 +<'5,//$ 8(57,&,//$7$ 327$02*(721 ,//,12(16,6 +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ 327$02*(721 ,//,12(16,6 6$*,77$5,$ 68%8/$7$ +<'5,//$ 8(57,&,//$7$ 327$02*(721 ,//,12(16,6 Ae 1,7(//$ 63 +<'5,//$ 8(57,&,//$7$

PAGE 112

n $33(1',; &21&(175$7,216 2) 1875,(176 = '5< 87 ,1',&$7(6 %(/28 '(7(&7$%/( /,0,76f $1' %,20$66 '5< 8764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( }6(37(0%(5 2&72%(5 /$.( /$.( .(55 %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 &(5$723+
PAGE 113

722 $33(1',; &21&(175$7,216 2) 1875,(176 ; '5< 87U ,1',&$7(6 %(/28 '(7(&7$%/( /,0,76f $1' %,20$66 '5< 8764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( 6(37(0%(5 2&72%(5 /$.( /$.( .(55 %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 %$&23$ &$52/,1,$1$ %$&23$ &$52/,1,$1$ %$&23$ &$52/,1,$1$ %$&23$ &$52/,1,$1$ %$&23$ &$52/,1,$1$ &(5$723+
PAGE 114

$33(1',; &21&(175$7,216 2) 1875,(176 = '5< '(7(&7$%/( /,0,76f $1' %,20$66 '5< 8762 0f %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; 87L ,1',&$7(6 %(/2: 2) 68%0(56(' 0$&523+<7(6 '$7( 6(37(0%(5 2&72%(5 /$.( /$.( .(55 f %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 0<5,23+
PAGE 115

$33(1',; &21&(175$7,216 2) 1875,(176 = '5< 87} ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f $1' %,20$66 '5< :764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( 6(37(0%(5 2&72%(5 /$.( /$.( /2&+/226$ %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7 $ +<'5,//$ 9(57,&,//$7$ '$7( 6(37(0%(5 2&72%(5 /$.( /$.( 2.$+803.$ %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ 327$02*(721 ,//,12(16,6 +<'5,//$ 9(57,&,//$7$ 327$02*(721 ,//,12(16,6 +<'5,//$ 9(57,&,//$7$ 327$02*(721 ,//,12(16,6 +<'5,//$ 9(57,&,//$7$ 327$02*(721 ,//,12(16,6 +<'5,//$ 9(57,&,//$7$ 327$02*(721 ,//,12(16,6 9$/,61(5,$ $0(5,&$1$ +<'5,//$ 9(57,&,//$7$ 327$02*(721 ,//,12(16,6 9$/,61(5,$ $0(5,&$1$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ f +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ &(5$723+
PAGE 116

$33(1',; &21&(175$7,216 2) 1875,(176 = '5< 87} ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f $1' %,20$66 '5< 8764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( 6(37(0%(5 2&72%(5 /$.( /$.( 2.$+803.$ %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7 $ +<'5,//$ 9(57,&,//$7 $ &(5$723+
PAGE 117

$33(1',; &21&(175$7,216 2) 1875,(176 '5< :7 W ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f $1' %,20$66 '5< 8764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7(f6(37(0%(5 2&72%(5 /$.( /$.( 67(//$ %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 &(5$723+
PAGE 118

$33(1',; &21&(175$7,216 2) 1875,(176 b '5< 87L ,1',&$7(6 %(/28 '(7(&7$%/( /,0,76f $1' %,20$66 '5< 8764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( 6(37(0%(5 2&72%(5 /$.( /$.( 67(//$ %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 +<'5,//$ 9(57,&,//$7 $ +<'5,//$ 9(57,&,//$7 $ +<'5,//$ 9(57,&,//$7$ '$7( -$18$5< )(%58$5< /$.e /$.( )$,59,(: %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 +<'5,//$ 9(57,&,//$7$ 327$02*(721 ,//,12(16,6 +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ 1$-$6 48$'$/83(16,6 1,7(//$ 63 327$02*(721 ,//,12(16,6 +<'5,//$ 9(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 +<'5,//$ 9(57,&,//$7$ 1,7(//$ 63 +<'5,//$ 9(57,&,//$7$ 1,7(//$ 63 +<'5,//$ 9(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 +<'5,//$ 9(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ 1,7(//$ 63

PAGE 119

& $33(1',; &21&(175$7,216 2) 1875,(176 b '5< :7 W ,1',&$7(6 %(/28 '(7(&7$%/( /,0,76f $1' %,20$66 '5< :764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( -$18$5< )(%58$5< /$.( /$.( )$,59,(: %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 1,7(//$ 63 327$02*(721 ,//,12(16,6 9$/,61(5,$ $0(5,&$1$ +<'5,//$ 2(57,&,//$7$ 1,7(//$ 63 @ 327$02*(721 ,//,12(16,6 +<'5,//$ 2(57,&,//$7$ 1,7(//$ 63 +<'5,//$ 2(57,&,//$7$ +<'5,//$ 2(57,&,//$7$ +<'5,//$ 2(57,&,//$7$ +<'5,//$ 2(57,&,//$7$ 1,7(//$ 63 327$02*(721 ,//,12(16,6 +<'5,//$ 2(57,&,//$7$ 327$02*(721 ,//,12(16,6 '$7( f-$18$5< )(%58$5< /$.( f/$.( -$&.621 %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 &(5$723+
PAGE 120

$33(1',; &21&(175$7,216 2) 1875,(176 ; '5< :7 ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f $1' %,20$66 '5< 8764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( -$18$5< )(%58$5< /$.( /$.( .(55 %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 +<'5,//$ 9(57,&,//$7$ &(5$723+
PAGE 121

$33(1',; &21&(175$7,216 2) 1875,(176 '5< 87 ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f $1' %,20$66 '5< :764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( -$18$5< )(%58$5< /$.( /$.( /2&+/226$ %82< 63(&,(6 %,20$66 Q S &$ 0* )( &8 +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ 3$1,&80 +(0,72021 183+$5 /87(80 +<'5,//$ 8(57,&,//$7$ 183+$5 /87(80 +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ 3$1,&80 +(0,72021 +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ 183+$5 /87(80 +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ '$7( -$18$5< )(%58$5< /$.( /$.( 2.$+803.$ %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ L +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$ f L 327$02*(721 ,//,12(16,6 R 8$/,61(5,$ $0(5,&$1$ +<'5,//$ 8(57,&,//$7$ 8$/,61(5,$ $0(5,&$1$ +<'5,//$ 8(57,&,//$7$ n +<'5,//$ 8(57,&,//$7$ +<'5,//$ 8(57,&,//$7$

PAGE 122

$33(1',; &21&(175$7,216 2) 1875,(176 '5< 87 r ,1',&$7(6 %(/28 '(7(&7$%/( /,0,76f $1' %,20$66 '5< :764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( } -$18$5< )(%58$5< /$.( /$.( 2.$+803.$ %82< 63(&,(6 %,20$66 1 3 &$ 0* )( &8 +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7 $ +<'5,//$ 9(57,&,//$7$ &(5$723+
PAGE 123

QR $33(1',; &21&(175$7,216 2) 1875,(176 = '5< :7 ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f $1' %,20$66 '5< :764 0f 2) 68%0(56(' 0$&523+<7(6 %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( f-$18$5< )(%58$5< /$.( f/$.( 67(//$ %82< 63(&,(6 f %,20$66 1 3 &$ 0* )( &8 +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7 $ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7 $ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ n +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ +<'5,//$ 9(57,&,//$7$ 0,&5$17+,080 80%52680 &(5$723+
PAGE 124

$33(1',; &21&(175$7,216 2) 1875,(176 ,1 +<'5262,/ 0*/ } ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f} 25*$1,& 0$77(5 20} '5< :7f! $1' '(16,7< '5< 870/f %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( 6(37(0%(5 2&72%(5 /$.( /$.( '2:1 %82< %,20$66 1 3 &$ 0* )( &8 20 '(16,7< 6 • f

PAGE 125

$33(1',; &21&(175$7,216 2) 1875,(176 ,1 +<'5262,/ 0*/} ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f} 25*$1,& 0$77(5 20} b '5< 87f} $1' '(16,7< '5< :70/f %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( 6(37(0%(5 2&72%(5 /$.( /$.( )$,58,(: %82< %,20$66 1 3 &$ 0* )( &8 20 '(16,7< A • }

PAGE 126

$33(1',; &21&(175$7,216 2) 1875,(176 ,1 +<'5262,/ 0*/ ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f} 25*$1,& 0$77(5 20 ; '5< 87f} $1' '(16,7< '5< :70/f %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( 6(37(0%(5 2&72%(5 /$.( /$.( .(55 %82< %,20$66 1 3 &$ 0* )( &8 20 '(16, f } n R LD

PAGE 127

$33(1',; &21&(175$7,216 2) 1875,(176 ,1 +<'5262,/ 0*/ W ,1',&$7(6 %(/28 '(7(&7$%/( /,0,76fU 25*$1,& 0$77(5 20L b '5< 87f } $1' '(16,7< '5< :70/f %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( 6(37(0%(5 2&72%(5 /$.( /$.( /2&+/226$ %82< %,20$66 1 n 3 &$ 0* )( &8 20 '(16Q L k

PAGE 128

$33(1',; &21&(175$7,216 2) 1875,(176 ,1 +<'5262,/ 0*/L ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f } 25*$1,& 0$77(5 20! '5< 87f $1' '(16,7< '5< :70/f %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( 6(37(0%(5 2&72%(5 /$.( /$.( 2.$+803.$ %82< %,20$66 1 3 &$ 0* )( &8 20 '(16,7< r n + 2 R

PAGE 129

$33(1',; &21&(175$7,216 2) 1875,(176 ,1 +<'5262,/ 0*/ ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f W 25*$1,& 0$77(5 20 '5< :7f U $1' '(16,7< '5< 870/f %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7(f6(37(0%(5 2&72%(5 /$.( /$.( 2.$+803.$ %82< %,20$66 1 3 &$ 0* )( &8 20 '(16,7< '$7(f6(37(0%(5 2&72%(5 /$.( /$.( 67(//$ %82< %,20$66 1 3 &$ 0* )( &8 20 '(16,7<

PAGE 130

$33(1',; &21&(175$7,216 2) 1875,(176 ,1 +<'5262,/ &0*/} ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f} 25*$1,& 0$77(5 &20} = '5< 87!} $1' '(16,7< '5< :70/f %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( 6(37(0%(5 2&72%(5 /$.( /$.( 67(//$ %82< %,20$66 1 3 &$ 0* )( &8 20 '(16,7< '$7( -$18$5< )(%58$5< /$.( ‘/$.( )$,59,(: %82< %,20$66 1 3 ; &$ 0* )( &8 20 '(16,7< UW Q

PAGE 131

QV $33(1',; &21&(175$7,216 2) 1875,(176 ,1 +<'5262,/ 0*/ W ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76 W 25*$1,& 0$77(5 20! ; '5< 87f! $1' '(16,7< '5< :70/f %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( -$18$5< )(%58$5< /$.( /$.( )$,59,(8 %82< %,20$66 1 3 &$ 0* )( &8 '0 '(16,7< '$7( -$18$5< )(%58$5< /$.( /$.( -$&.621 %82< %,20$66 1 3 &$ 0* )( &8 20 '(16,7< '$7( -$18$5< )(%58$5< /$.( /$.( .(55 %82< %,20$66 1 3 &$ 0* )( &8 20 '(16,7<

PAGE 132

$33(1',; &21&(175$7,216 2) 1875,(176 ,1 +<'5262,/ 0*/} ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76f" 25*$1,& 0$77(5 20 b '5< :7fW $1' '(16,7< '5< :70/f %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( -$18$5< )(%58$5< /$.( /$.( .(55 %82< %,20$66 1 3 &$ 0* )( &,20 n '(16,7< } '$7(-$18$5< )(%58$5< /$.(/$.( /2&+/226$ %82< %,20$66 1 3 &$ 0* )( &8 20 '(16,7< } r f FD

PAGE 133

$33(1',; &21&(175$7,216 2) 1875,(176 ,1 +<'5262,/ 0*/ W ,1',&$7(6 %(/28 '(7(&7$%/( /,0,76f W 25*$1,& 0$77(5 20 '5< 87f $1' '(16,7< '5< 870/f %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( -$18$5< )(%58$5< /$.( /$.( 2.$+803.$ %82< %,20$66 1 3 &$ 0* )( FX 20 '(16,7 Q 7LQ f D '$7( -$18$5< )(%58$5< /$.( /$.( 67(//$ %82< %,20$66 1 3 &$ 0* )( &8 20 '(16,7< rQ 

PAGE 134

$33(1',; &21&(175$7,216 2) 1875,(176 ,1 +<'5262,/ 0*/! ,1',&$7(6 %(/2: '(7(&7$%/( /,0,76 W 25*$1,& 0$77(5 20 ; '5< 87f W $1' '(16,7< '5< :70/f %82< 180%(56 &255(6321' 72 7+26( ,1 $33(1',; '$7( -$18$5< )(%58$5< /$.( /$.( 67(//$ %82< %,20$66 1 3 &$ 0* )( FX 20 '(16,7< r 2f Y n

PAGE 135

$33(1',; %$7+<0(75,& 0$36 2) 678'< /$.(6

PAGE 136

P /$.( /&+/6$ )(% /DQJHODQG

PAGE 137

P

PAGE 139

. /DQJHODQG $

PAGE 141

P /$.( .(55 -$1 /DQJHODQ G

PAGE 142

$33(1',; +<362*5$3+,& &859(6 2) 678'< /$.(6

PAGE 143

S $UHD Pa [ f +\SVRJUDSKLF FXUYH RI /DNH /RFKORRVD )HE

PAGE 144

$UHD P [ ,4f +\SVRJUDSKLF FXUYH RI /DNH )DLUYLHZ 6HSW

PAGE 145

f $UHD P [ f +\SVRJUDSKLF FXUYH RI /DNH 6WHOOD -DQ

PAGE 146

$UHD P [ f +\SVRJUDSKLF FXUYH RI /DNH -D[MN£RUW )HE

PAGE 147

'HSWK Pf $UHD P [ ,4f +\SVRJUDSKLF FXUYH RI /DNH 'RZQ 2FW

PAGE 148

$UHD P [ Vf +\SVRJUDSKLF FXUYH RI /DNH .HUU -DQ

PAGE 149

%,%/,2*5$3+< $LNHQ 6* $Q H[SHULPHQW UHODWLQJ YHJHWDWLYH PRUSKRORJ\ RI 0\ULRSK\OOXP DOWHUQLIORUXP '& +RORUDJDFHDHf WR JURZWK DQG VXEVWUDWH $TXDW %RW $PHULFDQ 3XEOLF +HDOWK 6HUYLFH 6WDQGDUG 0HWKRGV IRU WKH ([DPLQDWLRQ RI :DWHU DQG :DVWHZDWHU $P 3XEOLF +HDOWK $VVRF 1HZ I@ 5R\OHf $TXDW %RW %DUNR -: DQG 50 6PDUW 0RELOL]DWLRQ RI VHGLPHQW SKRVSKRUXV E\ VXEPHUVHG IUHVKZDWHU PDFURSK\WHV )UHVKZ ELRO %DUNR -: DQG 50 6PDUW 6HGLPHQW EDVHG QXWULWLRQ RI VXEPHUVHG PDFURSK\WHV $TXDW %RW %DVLRXQ\ )0 DQG :7 +DOOHU $TXDWLF ZHHG FRQWURO E\ VHTXHQWLDO KHUELFLGH DSSOLFDWLRQ RU GUDZGRZQ DQG FRQWLQXHG HFRORJLFDO DQG SK\VLRORJLFDO VWXGLHV RI K\GULOOD $QQXDO 5HSRUW WR WKH )ORULGD 'HSDUWPHQW RI 1DWXUDO 5HVRXUFHV SS %DVLRXQ\ )0 :7 +DOOHU DQG /$ *DUUDUG (YLGHQFH IRU URRW LURQ QXWULWLRQ LQ +\GULOOD YHUWLFLOODWD 5R\OH 3LW 6RLO %HUJ 5+ $QQXDO GHFOLQH RI WKH DTXDWLF PDFURSK\WH K\GULOOD +\GULOOD YHUWLFLOODWD OIf 5R\OH 3K' GLVVHUWDWLRQ 8QLYHUVLW\ RI )ORULGD 'HSW RI $JURQRP\ %HVW 02 DQG .5 0DQWDL *URZWK RI 0\ULRSK\OOXP 6HGLPHQW RI ODNH ZDWHU DV WKH VRXUFH RI QLWURJHQ DQG SKRVSKRUXV (FRORJ\ %ROH -% DQG -5 $OOHQ 8SWDNH RI SKRVSKRUXV IURP VHGLPHQW E\ DTXDWLF SODQWV 0\ULRSK\OOXP VSLFDWXP DQG +\GULOOD YHUWLFLOODWD :DWHU 5HV

PAGE 150

%UHPPHU -0 ,QRUJDQLF IRUPV RI QLWURJHQ B,MQ &$ %ODFN HG 0HWKRGV RI 6RLO $QDO\VLV 3DUW $JURQRP\ 6HULHV $P 6RF $JURQRP\ 0DGLVRQ :LVFRQVLQ %ULVWRZH -0 DQG :KLWFRPEH 7KH UROH RI URRWV LQ WKH QXWULWLRQ RI DTXDWLF YDVFXODU SODQWV $PHU %RW &DQILHOG '( -U &KHPLFDO DQG WURSKLF VWDWH FKDUDFWHULVWLFV RI )ORULGD ODNHV LQ UHODWLRQ WR UHJLRQDO JHRORJ\ )LQDO 5HSRUW WR WKH &RRSHUDWLYH )LVK DQG :LOGOLIH 5HVHDUFK 8QLW 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )ORULGD &DQILHOG '( -U DQG 5: %DFKPDQQ 3UHGLFWLRQ RI WRWDO SKRVSKRUXV FRQFHQWUDWLRQV FKORURSK\OO DB DQG 6HFFKL GHSWK LQ QDWXUDO DQG DUWLILFLDO ODNHV &DQ )LVK $TXDW 6FL &DQILHOG '( -U DQG /0 +RGJVRQ 3UHGLFWLRQ RI 6HFFKL GLVF GHSWKV LQ )ORULGD ODNHV ,PSDFW RI DOJDO ELRPDVV DQG RUJDQLF FRORU 6HU 1R RI WKH ), $J ([S 6WD &DQILHOG '( -U .$ /DQJHODQG 00DFHLQD :7 +DOOHU -9 6KLUHPDQ DQG -5 -RQHV 7URSKLF VWDWH FODVVLILFDn WLRQ RI ODNHV ZLWK DTXDWLF PDFURSK\WHV 6XEPLWWHG IRU SXEOLFDWLRQ $XJXVW &DULJQDQ 5 DQG .DOII 3KRVSKRUXV VRXUFHV IRU DTXDWLF ZHHGV ZDWHU RU VHGLPHQWV" 6FLHQFH &DWR -& DQG 0DWKLV 7KH )ORULGD IOHHW )RU EXVLQHVV DQG SOHDVXUH )ORULGD )RRG DQG 5HVRXUFH (FRQRPLFV 1HZVOHWWHU 1R 8QLYHUVLW\ RI )ORULGD *DLQHVYLOOH )/ SS &ROH %6 DQG ': 7RHW] 8WLOL]DWLRQ RI VHGLPHQWDU\ DPPRQLD E\ 3RWDPRJHWQ QRGRVXV DQG 6FLUSXV 9HUK ,QWHUQDW 9HUHLQ /LPQRO 'HEXVN 7$ DQG -+ 5\WKHU (IIHFWV RI VHDVRQDOLW\ DQG SODQW GHQVLW\ RQ WKH SURGXFWLYLW\ RI VRPH IUHVKZDWHU PDFURSK\WHV $TXDW %RW 'H0DUWH -$ DQG 57 +DUWPDQ 6WXGLHV RQ DEVRUSWLRQ RI 3AW )H DQG &DA E\ ZDWHUPLOIRLO 0\ULRSK\O XUQ H[DOEHVFHQV )HUQDOGf (FRORJ\ 'HQ+DUWRJ & DQG 6 6HJDO $ QHZ FODVVLILFDWLRQ RI ZDWHU SODQW FRPPXQLWLHV $FWD %RW 1HHUO 'HQQ\ 6LWHV RI QXWULHQW DEVRUSWLRQ LQ DTXDWLF PDFURSK\WHV (FRO

PAGE 151

'LOORQ 3DQG )+ 5LJOHU 7KH SKRVSKRUXV FKORURSK\OO UHODWLRQVKLS LQ ODNHV /LPQRO 2FHDQRJU 'LOORQ 3DQG )+ 5LJOHU $ VLPSOH PHWKRG IRU SUHGLFWLQJ WKH FDSDFLW\ RI D ODNH IRU GHYHORSPHQW EDVHG RQ ODNH WURSKLF VWDWXV )LVK 5HV %RDUG &DQ (GPRQGVRQ :7 1XWULHQWV DQG SK\WRSODQNWRQ LQ /DNH :DVKLQJWRQ ,Q 6\PSRVLXP RQ 1XWULHQWV DQG (XWURSKLFDWLRQ WKH /LPLWLQJ 1XWULHQW &RQWURYHUVH\ $PHU 6RF /LPQRO 2FHDQRJU 6SHF 6\PS 1R $OOHQ 3UHVV /DZUHQFH .DQVDV (PERG\ *& 3ULQFLSOHV RI SRQG IHUWLOL]DWLRQ 7UDQV $PHU )LVKHU 6RF )LW]JHUDOG *3 6RPH IDFWRUV LQ WKH FRPSHWLWLRQ RU DQWDJRQLVP DPRQJ EDFWHULD DOJDH DQG DTXDWLF ZHHGV 3K\FRO *HUORII &* 3ODQW DQDO\VLV IRU QXWULHQW DVVD\ RI QDWXUDO ZDWHUV (3$5, *RXOGHU 5 ,QWHUDFWLRQV EHWZHHQ WKH UDWHV RI SURGXFWLRQ RI D IUHVKZDWHU PDFURSK\WH DQG SK\WRSODQNWRQ LQ D SRQG 2LNRV +DVOHU $' DQG ( -RQHV 'HPRQVWUDWLRQ RI WKH DQWDJRQLVWLF DFWLRQ RI ODUJH DTXDWLF SODQWV RQ DOJDH DQG URWLIHUV (FRORJ\ +HDWK 5& DQG &6 &RQRYHU +\GURORJLF $OPDQDF RI )ORULGD 8QLWHG 6WDWHV 'HSDUWPHQW RI WKH ,QWHULRU 7DOODKDVVHH )/ SS +RJHWVX < 2NDQLVKL DQG + 6XJDZDUD 6WXGLHV RQ WKH DQWDJRQLVWLF UHODWLRQVKLS EHWZHHQ SK\WRSODQNWRQ DQG URRWHG DTXDWLF SODQWV -DS -RXUQ %RW +XWFKLQVRQ *( $ 7UHDWLVH RQ /LPQRORJ\ 9 /LPQRORJLFDO %RWDQ\ -RKQ :LOH\ t 6RQV ,QF 1HZ
PAGE 152

.RFK )& DQG 7/ 0F0HHNLQ $ QHZ GLUHFW 1HVVOHUL]DWLRQ 0LFUR.MHOGDKO PHWKRG DQG PRGLILFDWLRQ RI WKH 1HVVOHU)ROLQ UHDJHQW IRU DPPRQLD $P &KHP 6RF /LQG 27 +DQGERRN RI &RPPRQ 0HWKRGV LQ /LPQRORJ\ 7KH &9 0RVE\ &R 6DLQW /RXLV SS 0DFHLQD 0DQG -9 6KLUHPDQ 7KH XVH RI D UHFRUGLQJ IDWKRPHWHU IRU GHWHUPLQDWLRQ RI GLVWULEXWLRQ DQG ELRPDVV RI K\GULOOD $TXDW 3ODQW 0DQDJH 0F.HQWKXQ .0 1XWULHQWV DQG WKHLU UHODWLRQVKLS WR ZHHG DQG DOJDO JURZWKV +\DFLQWK &RQW 0DULVWR / 'LH 6HHW\SHQ )LQQODQGV DXI IORULVWLVFKHU XQG YHJHWDWLRQVSK\V LRJRQRPLVFKHU *UXQGODJH 6XRP (ODLQMD .DVYLHWLHW 6HYUDQ 9DQDPRQ .DVYLWLHW -XON $QQ %RW 6RF =RRO %RW 9DQDPRf f SS 0F5R\ &3 5%DUVGDWH DQG 1HYHUW 3KRVSKRUXV F\FOLQJ LQ DQ HHOJUDVV =RVWHUD PDULQD /f HFRV\VWHP /LPQRO 2FHDQRJU 0HKOLFK $ 1HZ H[WUDFWDQW IRU VRLO WHVW HYDOXDWLRQ RI SKRVSKRUXV SRWDVVLXP PDJQHVLXP FDOFLXP VRGLXP PDQJDQHVH DQG ]LQF &RPPXQ LQ 6RLO 6FLHQFH DQG SODQW DQDO\VLV 0HKOLFK $ 3HUVRQDO FRPPXQLFDWLRQ 0HQ]HO ': DQG 1 &RUZLQ 7KH PHDVXUHPHQW RI WRWDO SKRVSKRUXV LQ VHDZDWHU EDVHG RQ WKH OLEHUDWLRQ RI RUJDQLFDOO\ ERXQG IUDFWLRQV LQ SHUVXOIDWH R[LGDWLRQ /LPQRO 2FHDQRJU 0LFKDOVNL 0)3 DQG 1 &RQUR\ 7KH ROLJRWURSKLFDWLRQ RI /LWWOH 2WWHU /DNH 3DUU\ 6RXQG 'LVWULFW *UHDW /DNHV 5HV &RQI 3URF 0LVUD 5' (GDSKLF IDFWRUV LQ WKH GLVWULEXWLRQ RI WKH DTXDWLF SODQWV LQ WKH (QJOLVK ODNHV (FRO 0LWFKHOO && DQG 5' 5KXH 3URFHGXUHV XVHG E\ WKH 8QLYHUVLW\ RI )ORULGD 6RLO 7HVWLQJ DQG $QDO\WLFDO 5HVHDUFK /DERUDWRULHV 6RLO 6FLHQFH 'HSW ,QVWLWXWH RI )RRG DQG $JULFXOWXUDO 6FLHQFHV 8QLYHUVLW\ RI )ORULGD SS 0RVV % 7KH HIIHFWV RI IHUWLOL]DWLRQ DQG ILVK RQ FRPPXQLW\ VWUXFWXUH DQG ELRPDVV RI DTXDWLF PDFURSK\WHV DQG HSLSK\WLF DOJDO SRSXODWLRQV DQ HFRV\VWHP H[SHULPHQW (FRO 0R\OH -% 6RPH FKHPLFDO IDFWRUV LQIOXHQFLQJ WKH GLVWULEXWLRQ RI DTXDWLF SODQWV LQ 0LQQHVRWD $PHU 0LGL 1DW

PAGE 153

0XOOLJDQ +) DQG $ %DUDQRZVNL 1LWURJHQ DQG SKRVSKRUXV JUHHQKRXVH VWXGLHV RQ YDVFXODU DTXDWLF SODQWV DQG SK\WRSODQNWRQ 9HUK ,QWHUQ /LPQRO 9HUHLQ 0XUSK\ DQG -3 5LOH\ $ PRGLILHG VLQJOH VROXWLRQ PHWKRG IRU WKH GHWHUPLQDWLRQ RI SKRVSKDWH LQ QDWXUDO ZDWHUV $QDO &KLP $FWD 1DOO /( DQG -' 6FKDUGW 5HSRUW 9RO 7KH DTXDWLF PDFURSK\WHV RI /DNH &RQZD\ )ORULGD 7HFKQ 5HS $ 86 $UP\ &RUSV RI (QJLQHHUV -DFNVRQYLOOH ), SS 1HOVRQ ': DQG /( 6RPPHUV 'HWHUPLQDWLRQ RI WRWDO QLWURJHQ LQ QDWXUDO ZDWHUV (QYLURQ 4XD 1LFKROV 6$ 7KH HIIHFWV RI KDUYHVWLQJ DTXDWLF PDFURSK\WHV RU DOJDH :LV $FDG 6FL $UWV /HW 1LFKROV '6 1LWURJHQ QXWULWLRQ RI 0\ULRSK\OOXP VSLFDWXP YDULDWLRQ RI SODQW WLVVXH QLWURJHQ FRQFHQWUDWLRQV ZLWK VHDVRQ DQG VLWH LQ /DNH :LQJUD )UHVKZ ELRO 1LFKROV '6 DQG '5 .HHQH\ 1LWURJHQ QXWULWLRQ RI 0\ULRSK\O XUQ VSLFDWXP XSWDNH DQG WUDQVORFDWLRQ RI 1 E\ VKRRWV URRWV )UHVKZ ELRO 1LFKROVRQ 6$ 5$ /HYH\ DQG 35 6OXWH 0DFURSK\WHVHGLPHQW UHODWLRQVKLSV LQ &KDXWDJXD /DNH 9HUK ,QWHUQ /LPQRO 9HUHLQ 3HDUVDOO :+ 7KH DTXDWLF DQG PDUVK YHJHWDWLRQ RI (VWKZDLWH :DWHU (FRO 3HDUVDOO :+ 7KH DTXDWLF DQG PDUVK YHJHWDWLRQ RI (VWKZDLWH :DWHU (FRO 3HDUVDOO :+ 7KH DTXDWLF YHJHWDWLRQ RI (QJOLVK ODNHV (FRO 3HDUVDOO :+ 7KH GHYHORSPHQW RI YHJHWDWLRQ LQ (QJOLVK ODNHV FRQVLGHUHG LQ UHODWLRQ WR WKH JHQHUDO HYROXWLRQ RI JODFLDO ODNHV DQG URFN EDVLQV 3URF 5 6RF /RQG 3KLOOLSV */ (GPRQGVRQ :7 DQG % 0RVV $ PHFKDQLVP WR DFFRXQW IRU PDFURSK\WH GHFOLQH LQ SURJUHVVLYHO\ HXWURSKLFDWHG IUHVKZDWHUV $TXDW %RW 3RQG 5+ 7KH UHODWLRQ RI DTXDWLF SODQWV WR WKH VXEVWUDWXP FRQWULEXWLRQV WR WKH ELRORJ\ RI WKH JUHDW ODNHVf 5HS 86 )LVK &RPP

PAGE 154

5LJOHU )+ 7KH SKRVSKRUXV IUDFWLRQV DQG WKH WXUQRYHU WLPH RI LQRUJDQLF SKRVSKRUXV LQ GLIIHUHQW W\SHV RI ODNHV /LPQRO 2FHDQRJU 6DQG-HQVHQ DQG 0 6RQGHUJDDUG 'LVWULEXWLRQ DQG TXDQWLWDWLYH GHYHORSPHQW RI DTXDWLF PDFURSK\WHV LQ UHODWLRQ WR VHGLPHQW FKDUDFWHULVWLFV LQ ROLJRWURSKLF /DNH .DOJDDUG 'HQPDUN )UHVK ELRO 6$6 ,QVWLWXWH ,QF 6$6 8VHUV *XLGH (GLWLRQ +HOZLJ -7 DQG .$ &RXQFLO HGV $XWKRU &DU\ 1RUWK &DUROLQD SS 6FKLQGOHU ': :KROHODNH HXWURSKLFDWLRQ H[SHULPHQWV ZLWK SKRVSKRUXV QLWURJHQ DQG FDUERQ 9HUK ,QWHUQDW 9HUHLQ /LPQRO 6KDQQRQ (( DQG 3/ %UH]RQLN /LPQRORJLFDO FKDUDFWHULVWLFV RI QRUWK DQG FHQWUDO )ORULGD ODNHV /LPQRO 2FHDQRJU 6KHIILHOG &: (XWURSKLFDWLRQ DQG DTXDWLF ZHHGV +\DFLQWK &RQWU 6LPRQGV (3 DQG (5 *HUPDQ +\GURORJ\ RI WKH /DNH 'HDWRQ DQG /DNH 2NDKXPSND DUHD QRUWKHDVW 6XPWHU &RXQW\ )ORULGD :DWHU 5HVRXUFHV ,QYHVWLJDWLRQV RSHQILOH UHSRUW 86*6 6:):0' 6PLWK :9 DQG +6 6ZLQJOH 7KH XVH RI IHUWLOL]HU IRU FRQWUROOLQJ LQ WKH SRQGZHHG 1DMDV TXDGDOXSHQVLV 7UDQV WK 1 $P :LOGOLIH &RQI 6QHOO 8QGHUVXFKXQJHQ XEHU GLH 1DKUXQJVDXIQDKPH GHU ZDVVHUSIODQ]HQ )ORUD 6XWFOLII -) 0LQHUDO VDOWV DEVRUSWLRQ LQ SODQWV 3HUJDPPRQ 3UHVV 2[IRUG 6ZLQGOH '1 DQG -7 &XUWLV 3K\WRVRFLRORJ\ RI WKH ODUJHU VXEPHUVHG SODQWV LQ :LVFRQVLQ ODNHV (FRORJ\ 7RHW] ': 8SWDNH DQG WUDQVORFDWLRQ RI DPPRQLD E\ IUHVKZDWHU K\GURSK\WHV (FRORJ\ 8OULFK $ 3K\VLRORJLFDO EDVHV IRU DVVHVVLQJ WKH QXWULWLRQDO UHTXLUHPHQWV RI SODQWV $QQ 5HY 3ODQW 3K\V 9DQ 7. :7 +DOOHU DQG* %RZHV &RPSDULVRQ RI WKH SKRWRV\QWKHWLF FKDUDFWHULVWLHV RI WKUHH VXEPHUVHG DTXDWLF SODQWV 3ODQW 3K\VLRO 9ROOHQZHLGHU 5$ 2XWSXW PRGHOV ZLWK VSHFLDO UHIHUHQFH WR WKH SKRVSKRUXV ORDGLQJ FRQFHSW 6FKZHL] =HLW +\GURO

PAGE 155

:DLVHO < DQG = 6KDSLUD )XQFWLRQV SHUIRUPHG E\ URRWV RI VRPH VXEPHUVHG K\GURSK\WHV ,VUDHO %RW :HOVK 53+ DQG 3 'HQQ\ 7KH WUDQVORFDWLRQ RI 3 LQ WZR VXEPHUVHG DTXDWLF DQJLRVSHUP VSHFLHV 1HZ 3K\WRO :HW]HO 5' /LPQRORJ\ :% 6DXQGHUV &R 3KLODGHOSKLD SS :LHEH $+ 1RFWXUQDO GHSUHVVLRQ LQ WKH GLVVROYHG R[\JHQ LQ ILVKSRQGV ZLWK VSHFLDO UHIHUHQFH WR DQ H[FHVV RI FRDUVH YHJHWDWLRQ DQG RI IHUWLOL]HUV 7H[DVf 7UDQV $P )LVK 6RF

PAGE 156

%LRJUDSKLFDO 6NHWFK .HQQHWK $UWKXU /DQJHDQG ZDV ERUQ LQ
PAGE 157

, FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ :LOOLDP 7 +DOOHU &KDLUPDQ $VVRFLDWH 3URIHVVRU RI $JURQRP\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVSK\ *HRUJH (n %RZHV $VVRFLDWH 3URIHVVRU RI %RWDQ\ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DQLHO ( &DQILHOFMA-U $VVLVWDQW 3URIHVVRU RI )RUHVW 5HVRXUFHV DQG &RQVHUYDWLRQ FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ $ 'RQDOG $ *UDHW]$VVRFLDWH 3URIHVVRU RI 6RLO 6FLHQFH FHUWLI\ WKDW KDYH UHDG WKLV VWXG\ DQG WKDW LQ P\ RSLQLRQ LW FRQIRUPV WR DFFHSWDEOH VWDQGDUGV RI VFKRODUO\ SUHVHQWDWLRQ DQG LV IXOO\ DGHTXDWH LQ VFRSH DQG TXDOLW\ DV D GLVVHUWDWLRQ IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'DYLG / 6XWWRQ 3URIHVVRU RI $JURQRP\

PAGE 158

7KLV GLVVHUWDWLRQ ZDV VXEPLWWHG WR WKH *UDGXDWH )DFXOW\ RI WKH &ROOHJH RI $JULFXOWXUH DQG WR WKH *UDGXDWH &RXQFLO DQG ZDV DFFHSWHG DV SDUWLDO IXOILOOPHQW RI WKH UHTXLUHPHQWV IRU WKH GHJUHH RI 'RFWRU RI 3KLORVRSK\ 'HFHPEHU / 'HDQ *UDGXDWH 6FKRRO

PAGE 159

< $XJXVW ,QWHUQHW 'LVWULEXWLRQ &RQVHQW $JUHHPHQW ,Q UHIHUHQFH WR WKH IROORZLQJ GLVVHUWDWLRQ $XWKRU .HQQHWK $ /DQJHODQG 7LWOH 5HODWLRQVKLSV $PRQJ +\GURVRLO :DWHU &KHPLVWU\ 7UDQVSDUHQF\ &KORURSK\OO D DQG 6XEPHUVHG 0DFURSK\WH %LRPDVV 3XEOLFDWLRQ 'DWH .HQQHWK $ /DQJHODQG DV FRS\ULJKW KROGHU IRU WKH DIRUHPHQWLRQHG GLVVHUWDWLRQ KHUHE\ JUDQW VSHFLILF DQG OLPLWHG DUFKLYH DQG GLVWULEXWLRQ ULJKWV WR WKH %RDUG RI 7UXVWHHV RI WKH 8QLYHUVLW\ RI )ORULGD DQG LWV DJHQWV DXWKRUL]H WKH 8QLYHUVLW\ RI )ORULGD WR GLJLWL]H DQG GLVWULEXWH WKH GLVVHUWDWLRQ GHVFULEHG DERYH IRU QRQSURILW HGXFDWLRQDO SXUSRVHV YLD WKH ,QWHUQHW RU VXFFHVVLYH WHFKQRORJLHV 7KLV LV D QRQH[FOXVLYH JUDQW RI SHUPLVVLRQV IRU VSHFLILF RIIOLQH DQG RQOLQH XVHV IRU DQ LQGHILQLWH WHUP 2IIOLQH XVHV VKDOO EH" OLPLWHG WR WKRVH VSHFLILFDOO\ DOORZHG E\ )DLU 8VH DV SUHVFULEHG E\ WKH WHUPV RI 8QLWHG 6WDWHV FRS\ULJKW OHJLVODWLRQ FI 7LWOH 86 &RGHf DV ZHOO DV WR WKH PDLQWHQDQFH DULG SUHVHUYDWLRQ RI D GLJLWDO DUFKLYH FRS\ 'LJLWL]DWLRQ DOORZV WKH 8QLYHUVLW\ RI )ORULGD WR JHQHUDWH LPDJH DQG WH[WEDVHG YHUVLRQV DV DSSURSULDWH DQG WR SURYLGH DQG HQKDQFH DFFHVV XVLQJ VHDUFK VRIWZDUH 7KLV JUDQW RI SHUPLVVLRQV SURKLELWV XVHrRI WKH GLJLWL]HG YHUVLRQV IRU FRPPHUFLDO XVH RU 'URILW .HQQHWK $ /DQJHODQG 3ULQWHG RU 7\SHG 1DPH RI &RS\ULJKW +ROGHU/LFHQVHH 3HUVRQDO LQIRUPDWLRQ EOXUUHG 'DWH RI 6LJQDWXUH 5HWXUQ WKLV IRUP WR &DWK\ 0DUW\QLDN 3UHVHUYDWLRQ 'HSW 8QLYHUVLW\ RI )ORULGD /LEUDULHV 32 %R[ *DLQHVYLOOH )/